Powered by OpenAIRE graph
Found an issue? Give us feedback

BRE Trust

Country: United Kingdom
12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/J005576/1
    Funder Contribution: 449,782 GBP

    Our current infrastructure cannot deliver the adaptable, low-carbon future planned by the Government. Existing stock does not make best use of resources and materials; flows of material in and out of the system are poorly understood; and greater vulnerability caused by increased reliance on scarce materials (e.g. rare metals) is ignored. Low carbon infrastructure is being planned without taking into account the availability of materials required to support it. Measures taken to change the properties (embodied carbon/energy, strength etc) of materials, taken in good faith, can have unpredictable effects on input, stock and output of scarce resources in infrastructure. Unfortunate policy decisions are already being taken that will lock us into costly solutions. Left untreated, this will throw up huge obstacles to developing a sustainable infrastructure. We need to fully understand the material barriers to achieving adaptable low carbon infrastructure and propose approaches and systems to overcome these barriers. We will enhance the established stocks and flows (S&F) methodology used in industrial ecology by adding layers of extra information on material properties and vulnerability. We will extend S&F to include measures of quality (in terms of material properties and age) and vulnerability (in terms of scarcity, geo-politics and substitutability). This will transform S&F from being concerned only with quantities of materials, to capturing quality and availability as well. This will in turn allow us to analyse how changes in the properties of the materials used in a system may introduce vulnerabilities, associated with materials supply, waste management or stock changes. More excitingly, it will allow us to design more resilient solutions 'designing out' pinch-points in materials supply; it will inform CO2 policy making to encourage best value for money emission reduction; and it will provide a robust new framework for analysis of complex interconnected infrastructure systems. This methodology will be tested on three case studies to refine the initial approach and demonstrate its applicability to the challenge described in this proposal. The case studies will include: - Some simple, proof-of-concept physical infrastructure systems (such as a bridge) - More detailed of a system; for example a power station; and - a system of systems; a place that interacts with a number of different infrastructure systems (for example a neighbourhood or city). The case studies will be analysed to identify existing stocks, assess the vulnerability of 'replacement' infrastructures and identify new proposals and solutions for alternative approaches. We recognise that the boundaries of the systems and flows may be difficult to define in this project. However, we consider that it would be more important to demonstrate the approach than to define the boundaries absolutely. This demonstration will help us to understand how this approach could be used by policy makers and decision makers and inform more detailed studies in the future. Some single sector stocks and flows studies have been performed, and the apparent vulnerability of particular material supplies has been established (e.g. DEFRA A review of resource risks to business) but these have not been 'joined together' to produce a full picture of the vulnerability and adaptability of infrastructure. The proposal is adventurous in that the development of the complex methodology required, while based on a combination of well-understood approaches (S&F, LCA etc), will be challenging and require intellectual clarity from three contrasting disciplines: materials science, industrial ecology and environmental engineering. Our aim is to produce a new, low carbon, adaptive design paradigm for hyper-efficient use of valuable materials. This will lead to a step change in resource use, reduce the vulnerability of future infrastructure, reduce CO2 emissions and enable adaptability.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N018494/1
    Funder Contribution: 2,317,560 GBP

    Additive Building Manufacturing (ABM) is transforming the construction industry through the 3D printing of buildings and building components. A number of countries are now demonstrating ABM can substantially reduce construction time, material and transport costs, improve worker safety standards and alleviate construction's impact on urban traffic congestion and the environment. ABM also provides geometrical variety at no additional cost. In contrast to most manufacturing sectors, variety is a necessity within construction to satisfy different client requirements and adapt to unique terrain, boundary and laws governing each physical site. However, current ABM systems are difficult to deploy on construction sites due to their large size and fixed 3D Print build volumes that are not sufficiently flexible to deal with the complexities of most building scenarios, or provide adequate measures for human safety. These ABM technologies are unable to undertake maintenance and repair work, or construct buildings in many urban or elevated sites. They are also not able to be utilised for post-disaster reconstruction activities where their manufacturing speed would be of great assistance. To address this limitation, this research proposal aims to develop the world's first Aerial Additive Building Manufacturing (Aerial ABM) System consisting of a swarm of aerial robots (Unmanned Aerial Systems (UAS)) that can autonomously assess and manufacture building structures. Aerial ABM offers major improvements to human safety, speed, flexibility, and manufacturing efficiency compared to existing ABM and standard building construction technologies. We have already developed and demonstrated pilot results using UAS that can extrude 3D Print material during flight and we have developed simulation environments that allow for autonomous planning and execution of manufacturing with swarms of UAS working in collaboratively. Using the resources of the EPSRC grant, we will co-develop and demonstrate a working Aerial ABM system that will manufacture structural elements such as walls and a freeform building pavilion. This will require innovation and major technical contributions in Hardware, Autonomy as well as in Materials and Structures. Building on the consortium's world-leading expertise in these areas and support from industrial partners (Skanska, Ultimaker, BuroHappold, Dyson and BRE), we aim at delivering the following main research contributions through this grant: Aerial ABM Hardware - A novel Aerial ABM robot design with autonomous vision based stabilisation, navigation and mapping of a dynamically changing environment that is optimised for flight and 3D Printing tasks. Aerial ABM Autonomy - A framework for autonomous manufacturing that utilises swarm intelligence for collaborative robot-to-robot operations, dynamic task sharing/allocation, adaptive response to context and dynamic environment content involving functions such as new methods of collision avoidance. - Develop new modes of communication and control that enable the safe co-existence and cooperation of human workers, other robots and Aerial ABM robots on construction sites. Novel research in human-robot interaction, feedback and haptic interface functionalities will enable manufacturing flexibility suitable for construction sites that are always unique in size, shape and contextual complexity. - An integrated design and real-time structural analysis software that delivers optimal structural integrity from minimal material weight within building design strategies that leverage this free-form manufacturing process to create innovative building design possibilities. Aerial ABM Materials and Structures - Development of new high-performance 3D-printable composite material and deposition procedures for the additive manufacture (3D Printing) of free-form light-weight building structures utilising autonomous UAS.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016869/1
    Funder Contribution: 5,560 GBP

    Although there are many issues facing the built environment, decarbonisation is THE central challenge: The UK has the stated aim of an 80% cut in carbon emissions by 2050. This target can only be met if we transform society. The built environment is responsible for 50% of relevant emissions, making it the largest single emitter, and therefore it will need to be near fully decarbonised by that date. The Department of Architecture and Civil Engineering together with the Departments of Mech. Eng., Psychology, Computer Science and Maths at the University of Bath propose a Centre for Doctoral Training (CDT) in the Decarbonisation of the Built Environment. The £3.5m requested from the EPSRC will be leveraged by £6m from the University and at least £1.3m for industrial partners to fund a CDT operating at the interface of Architecture, Building Science, Social Science and Computing. The CDT will place the fundamental need of society to decarbonise at the core of a broad spectrum of research and training. A dynamic, multidisciplinary research and training environment (the combined research income since 2008 of the 7 departments is >£60m (£22.8m from EPSRC)) will underpin transformative research and training in the built environment. This will respond to a national and global need for highly skilled and talented scientists and engineers in the area, as evidenced by a recent report by the Royal Academy of Engineering, and as testified to by our key industrial partners. This, multidisciplinary, Centre has three aims, all centred on aiding this rapid decarbonisation: (i) to further the UK research agenda on sustainable building design including retrofit, materials and energy in-use; (ii) train the next generation of research-led engineering leaders and architects that will enter the construction profession through the UK's major engineering companies and architectural firms; (iii) help provide the next generation of academics who will have prime influence in this field from 2020 onwards. All students will receive cohort-based foundation training to supplement their original undergraduate or masters knowledge, as well as training in the post-carbon built environment and transferable skills. They will all conduct high quality and challenging research within EPSRC's Sustainable Built Environments priority area and be directed by joint supervision from different disciplines within the CDT and other departments where necessary. The broad research themes encompass the areas of: materials; building physics; construction management; control; social science; resilience to climate change, economics and architecture. Participation from key industry partners will address stakeholder needs, and partner institutions such as the Building Research Establishment, Arup, Atkins, Buro Happold, Arup, Feilden Clegg Bradley Studios, Lhoist, Expedition will provide world-leading external input, along with meaningful opportunities for student placements. Detailed management plans have been developed in order to facilitate the smooth running of the centre and to enable excellence in the training and research aspects of the proposal. The CDT will be supported by the creation of physical and virtual laboratories for the students. This initiative has attracted strong and influential support: "Within this field, decarbonisation is a crucial factor for our clients" and "There is no doubt in my mind that Bath University is the right place for such a Centre......it is the best of the multi-disciplinary schools in the country that allows people to bridge between the traditional disciplines" Michael Cook, Chairman Buro Happold. (See letters of support.)

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P005667/2
    Funder Contribution: 33,590 GBP

    Tackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P005667/1
    Funder Contribution: 303,988 GBP

    Tackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.