
Inovo Robotics
Inovo Robotics
2 Projects, page 1 of 1
assignment_turned_in Project2021 - 2025Partners:Shadow Robot Company Ltd, King Abdullah University of Sc and Tech, NVIDIA Limited, Kinova Europe GmbH, GEFCO +37 partnersShadow Robot Company Ltd,King Abdullah University of Sc and Tech,NVIDIA Limited,Kinova Europe GmbH,GEFCO,Hong Kong University of Science and Tech,University Hospitals Birmingham NHS Foundation Trust,UNIVERSITY OF CAMBRIDGE,Indian Inst of Technology Kharagpur,Eurocontrol,University Hospital Coventry,Eurocontrol,KCL,University Hospital Coventry NHS Trust,Cent Manchester Uni Hospital NHS FdTrust,Columbia University,University of Warwick,University of Warwick,Soliton IT Limited,Indian Institute of Technology Kharagpur,Inovo Robotics,Insignia Medical Systems,Shadow Robot (United Kingdom),GEFCO UK Ltd,Manchester University NHS Fdn Trust,Inovo Robotics,The Engineering Laboratory of the United,University of Cambridge,Soliton IT Limited,The Engineering Laboratory of the United,NVIDIA Limited (UK),Columbia University,TU Wien,King Abdullah University of Science and Technology,TU Wien,University Hospitals Birmingham NHS FT,Kinova Europe GmbH,Stanford University,Imperial College London,Insignia Medical Systems,SU,HKPUFunder: UK Research and Innovation Project Code: EP/V024868/1Funder Contribution: 1,518,510 GBPDespite being far from having reached 'artificial general intelligence' - the broad and deep capability for a machine to comprehend our surroundings - progress has been made in the last few years towards a more specialised AI: the ability to effectively address well-defined, specific goals in a given environment, which is the kind of task-oriented intelligence that is part of many human jobs. Much of this progress has been enabled by deep reinforcement learning (DRL), one of the most promising and fast-growing areas within machine learning. In DRL, an autonomous decision maker - the "agent" - learns how to make optimal decisions that will eventually lead to reaching a final goal. DRL holds the promise of enabling autonomous systems to learn large repertoires of collaborative and adaptive behavioural skills without human intervention, with application in a range of settings from simple games to industrial process automation to modelling human learning and cognition. Many real-world applications are characterised by the interplay of multiple decision-makers that operate in the same shared-resources environment and need to accomplish goals cooperatively. For instance, some of the most advanced industrial multi-agent systems in the world today are assembly lines and warehouse management systems. Whether the agents are robots, autonomous vehicles or clinical decision-makers, there is a strong desire for and increasing commercial interest in these systems: they are attractive because they can operate on their own in the world, alongside humans, under realistic constraints (e.g. guided by only partial information and with limited communication bandwidth). This research programme will extend the DRL methodology to systems comprising of many interacting agents that must cooperatively achieve a common goal: multi-agent DRL, or MADRL.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::264f4b415246d0bed11f763c33709986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::264f4b415246d0bed11f763c33709986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:iRob International Ltd., Arrival Ltd, Stewart Milne Group, Cambrian Intelligence, Rolls-Royce (United Kingdom) +99 partnersiRob International Ltd.,Arrival Ltd,Stewart Milne Group,Cambrian Intelligence,Rolls-Royce (United Kingdom),KUKA (United Kingdom),Expert Tooling and Automation Limited,Constellium UK Ltd,myenergi Ltd.,Sunamp (United Kingdom),IntelliDigest,IntelliDigest,Measurements Solutions Ltd.,True Position Robotics Ltd,MAKAR Ltd,Scottish Agricultural Org Society (SAOS),Scorpion Vision Limited,MAKAR Ltd,Teknek Limited,Claromech Limited,Expert Tooling and Automation Limited,BAE Systems (UK),Ultraleap,Chinese Academy of Sciences,University of Patras,Ocado Group,Toyota Motor Manufacturing Ltd,GT,RAR UK Automation Ltd.,BAE Systems (Sweden),myenergi Ltd.,Measurement Solutions Ltd.,AIRBUS OPERATIONS LIMITED,ElectroImpact,Arrival Ltd,MTC,True Position Robotics Ltd.,Cambrian Intelligence,Airbus Operations Limited,Rolls-Royce (United Kingdom),Manufacturing Technology Centre (United Kingdom),Shadow Robot Company Ltd,SP Technology Automation and Robotics,Fanuc Robotics (U K) Ltd,KUKA Robotics UK Limited,Fraunhofer HHI,SUNAMP LIMITED,KTH,CAS,Airbus (United Kingdom),Electroimpact UK Limited (UK),Georgia Institute of Technology,Claromech Limited,Agri-EPI Centre,Fraunhofer Institute for Manufacturing Engineering and Automation,University of Birmingham,Constellium (United Kingdom),Liberty Produce,Ocado Limited,Inovo Robotics,Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute,Fraunhofer IPA,Fraunhofer HHI,Agricultural Engineering Precision Innovation Centre,Norscot Joinery Limited,RAR UK Automation Ltd.,SP Technology Automation and Robotics,Loughborough University,Toyota Motor Manufacturing (UK) Ltd,CRRC (United Kingdom),BAE Systems (United Kingdom),HSSMI Ltd,Spirit AeroSystems (United Kingdom),Nat Inst of Industrial Eng NITIE Mumbai,Loughborough University,CNC Robotics Ltd,GKN Aerospace Services Ltd,Chinese Academy of Sciences,Scottish Agricultural Org Society (SAOS),Norscot Joinery Limited,Stewart Milne Group,HAL Robotics Ltd (UK),Soil Machine Dynamics UK,National Institute of Industrial Engineering,Shadow Robot (United Kingdom),Scorpion Vision Limited,HAL Robotics Ltd (UK),Fanuc Robotics (U K) Ltd,Ultraleap,Be-St,Construction Scotland Innovation Centre,Royal Institute of Technology KTH Sweden,iRob International Ltd.,Inovo Robotics,GKN Aerospace,University of Patras,Nat Inst of Industrial Eng NITIE Mumbai,KUKA Robotics UK Limited,ROLLS-ROYCE PLC,Liberty Produce,Spirit Aerosystems,Teknek Limited,HSSMI Ltd,CNC Robotics LtdFunder: UK Research and Innovation Project Code: EP/V062158/1Funder Contribution: 4,821,580 GBPThe UK has fallen significantly behind other countries when it comes to adopting robotics/automation within factories. Collaborative automation, that works directly with people, offers fantastic opportunities for strengthening UK manufacturing and rebuilding the UK economy. It will enable companies to increase productivity, to be more responsive and resilient when facing external pressures (like the Covid-19 pandemic) to protect jobs and to grow. To enable confident investment in automation, we need to overcome current fundamental barriers. Automation needs to be easier to set up and use, more capable to deal with complex tasks, more flexible in what it can do, and developed to safely and intuitively collaborate in a way that is welcomed by existing workers and wider society. To overcome these barriers, the ISCF Research Centre in Smart, Collaborative Robotics (CESCIR) has worked with industry to identify four priority areas for research: Collaboration, Autonomy, Simplicity, Acceptance. The initial programme will tackle current fundamental challenges in each of these areas and develop testbeds for demonstration of results. Over the course of the programme, CESCIR will also conduct responsive research, rapidly testing new ideas to solve real world manufacturing automation challenges. CESCIR will create a network of academia and industry, connecting stakeholders, identifying challenges/opportunities, reviewing progress and sharing results. Open access models and data will enable wider academia to further explore the latest scientific advances. Within the manufacturing industry, large enterprises will benefit as automation can be brought into traditionally manual production processes. Similarly, better accessibility and agility will allow more Small and Medium sized Enterprises (SMEs) to benefit from automation, improving their competitiveness within the global market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bfda36612c477cb745a385829feddfa3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bfda36612c477cb745a385829feddfa3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu