
UK Power Networks
UK Power Networks
24 Projects, page 1 of 5
assignment_turned_in Project2012 - 2018Partners:E.ON New Build and Technology Ltd, ETI, National Grid PLC, Nexor Ltd, Isentropic Ltd +42 partnersE.ON New Build and Technology Ltd,ETI,National Grid PLC,Nexor Ltd,Isentropic Ltd,Electricity North West (United Kingdom),ALSTOM GRID UK,National Grid plc,Highview Power Storage,UK Power Networks,EDF Energy,ABB Group,Electricity Storage Network Ltd,British Energy Generation Ltd,Carbon Trust,Highview Power Storage (United Kingdom),Energy Technologies Institute (ETI),Imperial College London,Axeon Ltd,Isentropic Ltd,International Power plc,UK Power Networks,M-Solv Ltd,WorleyParsons UK,Northern Powergrid (United Kingdom),E.ON New Build and Technology Ltd,Department for Business, Energy and Industrial Strategy,Carbon Trust,Dong Energy,Electricity Storage Network (United Kingdom),DECC,E-ON UK plc,M-Solv Limited,Northern Powergrid,ABB Ltd,WorleyParsons UK,Axeon Ltd,Department of Energy and Climate Change,Williams Advanced Engineering,ABB (Switzerland),Ørsted (Denmark),Alstom Grid Ltd,Williams Advanced Engineering,International Power plc,Nexeon Ltd,Electricity North West Limited,EDFFunder: UK Research and Innovation Project Code: EP/K002252/1Funder Contribution: 5,621,020 GBPThe UK electricity system faces challenges of unprecedented proportions. It is expected that 35 to 40% of the UK electricity demand will be met by renewable generation by 2020, an order of magnitude increase from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by the incorporation of heat and transport sectors into the electricity system. The key concerns are associated with system integration costs driven by radical changes on both the supply and the demand side of the UK low-carbon system. Our analysis to date suggests that a low-carbon electricity future would lead to a massive reduction in the utilisation of conventional electricity generation, transmission and distribution assets. The large-scale deployment of energy storage could mitigate this reduction in utilisation, producing significant savings. In this context, the proposed research aims at (i) developing novel approaches for evaluating the economic and environmental benefits of a range of energy storage technologies that could enhance efficiency of system operation and increase asset utilization; and (ii) innovation around 4 storage technologies; Na-ion, redox flow batteries (RFB), supercapacitors, and thermal energy storage (TES). These have been selected because of their relevance to grid-scale storage applications, their potential for transformative research, our strong and world-leading research track record on these topics and UK opportunities for exploitation of the innovations arising. At the heart of our proposal is a whole systems approach, recognising the need for electrical network experts to work with experts in control, converters and storage, to develop optimum solutions and options for a range of future energy scenarios. This is essential if we are to properly take into account constraints imposed by the network on the storage technologies, and in return limitations imposed by the storage technologies on the network. Our work places emphasis on future energy scenarios relevant to the UK, but the tools, methods and technologies we develop will have wide application. Our work will provide strategic insights and direction to a wide range of stakeholders regarding the development and integration of energy storage technologies in future low carbon electricity grids, and is inspired by both (i) limitations in current grid regulation, market operation, grid investment and control practices that prevent the role of energy storage being understood and its economic and environmental value quantified, and (ii) existing barriers to the development and deployment of cost effective energy storage solutions for grid application. Key outputs from this programme will be; a roadmap for the development of grid scale storage suited to application in the UK; an analysis of policy options that would appropriately support the deployment of storage in the UK; a blueprint for the control of storage in UK distribution networks; patents and high impact papers relating to breakthrough innovations in energy storage technologies; new tools and techniques to analyse the integration of storage into low carbon electrical networks; and a cohort of researchers and PhD students with the correct skills and experience needed to support the future research, development and deployment in this area.
more_vert assignment_turned_in Project2013 - 2016Partners:TRL, Imperial College London, E.ON New Build and Technology Ltd, UK Power Networks, TRL Ltd (Transport Research Laboratory) +12 partnersTRL,Imperial College London,E.ON New Build and Technology Ltd,UK Power Networks,TRL Ltd (Transport Research Laboratory),Utility Partnership Ltd,UK Power Networks,UPL (Utility Partnership Limited),E-ON UK plc,Welsh Automotive Forum,National Grid PLC,E.ON New Build and Technology Ltd,Scottish and Southern Energy SSE plc,Scottish and Southern Energy,Welsh Automotive Forum,National Grid plc,Scottish and Southern Energy SSE plcFunder: UK Research and Innovation Project Code: EP/L001039/1Funder Contribution: 1,005,770 GBPThe project will provide strategic insights regarding the integration of the transport sector into future low carbon electricity grids, and is inspired by limitations in current grid investment, operation and control practices as well as regulation and market operation, which may prevent an economically and environmentally effective transition to electric mobility. Although various individual aspects of the operation of electricity systems within an integrated transport sector have received some research attention, integrated planning of the grid, EV charging infrastructure and ICT (information and communication technologies) infrastructure design have not been addressed yet. In this proposal we propose to tackle these challenges in an integrated manner. At the heart of our proposal is a whole systems approach. It recognises the need to consider: EV demand and flexibility, electricity network operation and design, charging infrastructure operation and investment, ICT requirements and business models for electric mobility. This is essential when considering constraints imposed by the network on EV charging, and in return the requirements imposed by EVs on the system design and operation. This research will place emphasis on future energy scenarios relevant to the UK and China, but the tools, methods and technologies we develop will have wider applications. Specifically, a number of infrastructure planning related challenges for the massive rollout of EV have yet to be comprehensively investigated. First, traditional models of the travel of vehicles are based on the statistical prediction of aggregate-level travel demand without capturing the behavioural characterisation of users' driving requirements and preferences. Hence, this project will investigate new alternative activity-based travel demand models capturing in a bottom-up approach the behavioural basis of individual users' decisions regarding participation in activities yielding driving needs, behavioural aspects related to EV adoption and alternative EV charging strategies, as well as the characteristics of EV and the charging infrastructure. Unlike the existing models that analyse the EV impacts on isolated sectors of the power system, this project will assess economic effects on generation, transmission and distribution sectors simultaneously and subsequently reveal trade-offs between the cost and benefit streams of different EV charging strategies for different actors in the electricity chain. Furthermore, the closely related problem of EV charging infrastructure and ICT infrastructure planning -which has a central role in the massive EV rollout- has been almost completely neglected. This research project will examine novel risk-constrained stochastic optimization approaches in order to address the challenge of strategically investing in EV recharging and ICT infrastructures ahead of need, and will analytically investigate the interdependence between the power systems and EV enabling infrastructure planning. This project will also investigate alternative business models for the EV market integration and will propose a framework providing the opportunity for EVs to simultaneously support more efficient system operation and investment in assets across the entire electricity system chain. This research will formulate a new decentralised, market-based planning mechanism appropriate for deregulated power system environment and enable the investigation of the impact of alternative market designs and arrangements on the cost effectiveness of EV integration. Finally, a set of comprehensive use cases employing tools and methodologies developed in the project will be employed to understand the role and the importance of electric mobility in future UK and China low carbon systems and produce a suitable commercial and regulatory framework and a set of policy recommendations on ways of supporting the optimal deployment of EV infrastructure.
more_vert assignment_turned_in Project2018 - 2019Partners:UK Power Networks, Aston University, National Grid PLC, Aston University, Scottish and Southern Energy SSE plc +17 partnersUK Power Networks,Aston University,National Grid PLC,Aston University,Scottish and Southern Energy SSE plc,Arup Group,Arup Group Ltd,Scottish and Southern Energy SSE plc,Evergreen Smart Power,Scottish Power Energy Networks,University of Birmingham,Evergreen Group,University of Birmingham,SOREA,State Grid Corporation of China,SOREA,National Grid plc,State Grid Corporation of China,Nortech Management Ltd,UK Power Networks,Nortech Management Ltd,Scottish Power Energy Networks Holdings LimitedFunder: UK Research and Innovation Project Code: EP/S001778/1Funder Contribution: 569,980 GBPThe objective of the Fellowship is to create a new platform to identify millions of streams of power flows in the large-scope distribution network to enable the ambitious blockchain technology for the power industry, which is seen as a future trend with a growing number of distributed energy resources. I believe that the eventual peer-to-peer (P2P) electricity market can only be realised when individual transactions can be physically traced to enhance the transparency and reflect the actual usage of the network for correct billing. This Fellowship questions the overlook of the present blockchain concept on the power grid infrastructure and proposes to analytically uncouple transactions from the usage of the physical medium for electricity transport. This Fellowship pushes the complex power systems (particularly distribution networks) analytics to its new limits by i) exploiting geographical information system with new distribution power flow tracing techniques with newly defined trait; ii) taking into account the mobility of distributed energy resources, e.g. electric vehicles, battery energy storage to flexible electricity trading from the physical constraint of the infrastructure; iii) using analytical, signal processing and chromatics methodology with smart metering data to improve power flow tracing performance especially for highly complicated distribution networks with microgrids and millions of nodes to represent all market participants; iv) developing a new tool as a fundamental layer of application programming interface to the future blockchain platform. The outcome of this Fellowship will not only shed light on the fundamental barriers on the energy P2P sharing economy but will also lead to the rollout of blockchain in the energy sector by enabling substantial public engagement to realise "Decarbonisation, Deregulation, Decentralisation" via "Transactions, Transparency, Traceability, Time-stamped, Trust".
more_vert assignment_turned_in Project2020 - 2024Partners:WELSH GOVERNMENT, Scottish and Southern Energy SSE plc, UK Energy Research Centre, NREL, Committee on Climate Change +23 partnersWELSH GOVERNMENT,Scottish and Southern Energy SSE plc,UK Energy Research Centre,NREL,Committee on Climate Change,SP Energy Networks,UKERC ,EERE,Welsh Government,Imperial College London,EPFZ,Scottish Government,Scottish Power Energy Networks Holdings Limited,Welsh Government,Scottish Government,NREL (Nat Renewable Energy Laboratory),SCOTTISH GOVERNMENT,ETH Zurich,Dept for Sci, Innovation & Tech (DSIT),University of Oxford,UK Power Networks,Department for Business, Energy and Industrial Strategy,Scottish and Southern Energy,Dept for Business, Innovation and Skills,Scottish and Southern Energy SSE plc,CCC,GLA,UK Power NetworksFunder: UK Research and Innovation Project Code: EP/T023031/1Funder Contribution: 1,232,010 GBPThe project will provide the UK's first 'map' of network capacity and headroom and consider case studies in different parts of the UK in detail. It will also assess how heat and cooling demand might change in future using weather data. Based on all this the project will evaluate the nature of potential disruption in local communities created by heat system decarbonisation. It will engage with citizens to investigate their perceptions and expectations of heat system change. There are significant information gaps associated with the capacity of local energy distribution networks (gas, electricity and heat) to deliver energy for low carbon heating and cooling. Competing options include converting the gas grid to hydrogen, expanding electrification using heat pumps, and district heating. A key consideration is the nature of any constraints on the capacity of local networks, in particular the ability to deliver energy needed to meet peak demands, which can be far higher than average during extreme cold spells and perhaps in future during heat waves. Lack of both data and understanding of what disruption might be associated with heat system change are serious impediments to policy action on heat system decarbonisation. Research commissioned by the Committee on Climate Change analysis of a net zero target for 2050 concludes that utilisation of distribution network capacity is poorly understood. The project sets out to overcome this gap in information by evaluating what is known about distribution network condition based upon information reported by network companies and through interviews and surveys involving industry participants. It will compare electricity and gas networks and also consider district heating. Consumer acceptability of system change and local level disruption is also central to low carbon heat, yet it is similarly poorly understood and seldom linked to engineering detail at street or neighbourhood level. The project will use deliberative social science research to explore the expectations of citizens to the changes and disruption to local environments that might be associated with competing alternatives for delivering low carbon heating (and cooling) services to homes and businesses. Recent work on heat decarbonisation is strong with respect to assessment of end use technology options (i.e. what goes into the buildings) and on supply energy vectors (which energy source is utilised). However, it is weak on engineering, economic and social assessment of infrastructure needs and trade-offs - particularly for the 'last mile' or distribution network infrastructures that bring energy services to homes and businesses. This project is explicitly focused on this 'last mile' of infrastructure and combines engineering evaluation and constraint modelling with social science insights from public engagement with proposed heating solutions and their associated disruption(s), to assess the impacts of heat system change and what people think about them.
more_vert assignment_turned_in Project2013 - 2016Partners:CARDIFF UNIVERSITY, Alstom Grid Ltd, Cardiff University, RWE Generation, Western Power Distribution +6 partnersCARDIFF UNIVERSITY,Alstom Grid Ltd,Cardiff University,RWE Generation,Western Power Distribution,ALSTOM GRID UK,Western Power Distribution (United Kingdom),RWE npower,UK Power Networks,UK Power Networks,Cardiff UniversityFunder: UK Research and Innovation Project Code: EP/K006274/1Funder Contribution: 1,002,350 GBPThe UK has a commitment to reduce its greenhouse gas emissions by at least 80% by 2050 relative to 1990 levels. DECC's 2050 Pathway Analysis shows the various ways through which we can achieve this target. All feature a high penetration level of renewable generation and a very substantial uptake of electrification of heat and transport, particularly from 2030 onwards. This will place unprecedented demand and distributed generation on electricity supply infrastructure, particularly the distribution systems due to their size. If a business as usual model is to apply, then the costs of de-carbonisation will be very high. Being equally confronted by the pressure of global climate change and sustainable development, the Chinese government has declared that by 2020 the carbon emission per-unit GDP will reduce to 40-45% of that in 2008. However China also needs to meet a 10% annual demand increase which has been on-going for the past 20 years, and this rate of growth is expected to continue for at least another 10 years. Therefore reinforcement of current distribution networks in an economic and sustainable way while meeting customers' rising expectation of supply quality and reliability is one of the basic requirements of Smart Grid development in China. It is a matter of urgency to investigate how to develop and adapt the current distribution network using Smart Grid interventions in order to facilitate timely connection of low carbon and sustainable technologies in a cost-effective manner. This is a global challenge faced by UK, China and many other countries. Our consortium brings together leading researchers from the UK and China to jointly investigate the integrated operation and planning for smart distribution networks to address two key research challenges: (1) Conventional network operational and planning approaches do not address the emerging opportunities offered by increased measurement and control and do not deal with the inevitable uncertainties of smart distribution networks. (2) A general understanding of how national or regional electricity distribution infrastructure should be developed and operated using Smart Grid interventions is required urgently by those making policy within Distribution companies and in Government/Regulators. Such an understanding cannot be gained from running conventional power system analysis tools and then manually assessing the results. New techniques and approaches will be investigated to address these important questions (1) Distribution state estimation and probabilistic predictive control approaches will be used to determine the location and control policies of smart grid interventions including Soft Open Points and electronic embedded hybrid on-load tap changers. (2) Novel dynamic pricing techniques will be proposed to resolve conflicts between energy markets and network operation and find synergies where these exist. (3) A very fast network assessment tool and a rolling planning tool that will bridge the gap between planning and operation will be developed. (4) New visualisation and reporting techniques will be developed to give network planners, operators as well policy makers clear insights as to how Smart Grid interventions can be used most effectively. Complementary, cross-country expertise will allow us to undertake the challenging research with substantially reduced cost, time and effort. The research will build upon the long-time well established collaborations between partner institutions of the two countries. Our ambition is to provide a strategic direction for the future of smart electricity distribution networks in the 2030-2050 time frame and deliver methodologies and technologies of alternative network operation and planning strategies in order to facilitate a cost effective evolution to a low carbon future.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right