
Lenzing
Lenzing
4 Projects, page 1 of 1
assignment_turned_in Project2020 - 2025Partners:Plymouth University, Lenzing, Lenzing (Austria)Plymouth University,Lenzing,Lenzing (Austria)Funder: UK Research and Innovation Project Code: NE/V007556/1Funder Contribution: 1,082,440 GBPBiodegradable bioplastics (BBPs) are a category of materials that offer considerable potential to reduce the global environmental challenge resulting from the accumulation of end-of-life plastic. BBPs are made from renewable carbon such as plant material (bioplastics) and as a consequence of their molecular structure and resulting properties are regarded to have enhanced rates of biodegradation compared to conventional plastics. Currently only around 1% of plastic production is in the form of bioplastics; driven by the potential advantages demand is growing rapidly. BBPs are already widely used in applications with substantive pathways to the natural environment (agricultural mulch film, textile fibres, beads in cosmetics). Yet our understanding about their fate in the natural environment is poorly understood, because key information on the kinetics of degradation and any potential environmental effects of their breakdown products (fragments and chemical additives) is lacking. Biodegradation has been demonstrated under specific conditions, such as commercial compositing, and there are associated standards, but studies indicate degradation can be slow or incomplete under natural conditions. This ambitious, yet highly tractable, 4-year research proposal brings together internationally recognised polymer scientists, marine and terrestrial biologists and ecotoxicologists from the Universities of Plymouth and Bath together with Plymouth Marine Laboratory, Project Partner Lenzing AG and an Advisory Group including representatives from Government agencies, BBP producers, commercial users (Sainsbury's and Riverford Organic Farms), Water Authorities as well as NGOs. Collectively the team will establish the fate of BBPs in the environment, their effect on organisms and ecosystem function and develop environmental risk assessments. We will characterise BBPs in terms of their composition (chemical structure, additives) as well as features that can be used to assess deterioration (molecular weight, thickness, strength) in the environment. We will then establish the fate of BBPs in marine and terrestrial environments in terms of rates of deterioration as well as the pathways and environmental accumulation of BBPs and their breakdown products. This will inform experiments to examine any associated direct effects of BBP deterioration on marine and terrestrial organisms (animals such as mussels and earthworms and plants such as herbs and grass) and to examine any indirect consequences on ecological and biogeochemical processes. Collectively, these outcomes, together with existing literature, will be used to evaluate how the fate and behaviour of BBPs in the environment relates to hazards in order to conduct a risk assessment to show at what concentration BBPs and their associated chemicals may have an impact on animals, their habitats, and how the ecosystem functions. Estimates of safe levels in soil and water will be derived as well as factors that add uncertainty and indicate priorities for future research. Outcomes in terms of potential risks, will be communicated alongside the benefits of BBPs - so as to provide a balanced perspective and help guide development for the next generation of BBPs. This will be disseminated by publications and stakeholder engagement, including: data sharing with OECD and Defra; a technical stakeholder workshop (industry, government, consultancy, NGOs. etc) and a training event - how to complete a risk assessment for plastics. There has been considerable media attention on plastic pollution and this has translated into an urgent call for action by the public. However, current understanding of the most appropriate actions is less clear and reliable information on the benefits and risks of novel materials such as BBPs, is lacking. Hence, this research is of critical importance to guide changes in commercial practice and policy responses, such as implementation of the 25 year Environment Plan.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16e0339e9eda443691d047033ab85667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16e0339e9eda443691d047033ab85667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2013Partners:University of Exeter, Technical Fibre Products Ltd, Borregaard, University of Exeter, LenzingUniversity of Exeter,Technical Fibre Products Ltd,Borregaard,University of Exeter,LenzingFunder: UK Research and Innovation Project Code: EP/F036914/2Funder Contribution: 129,672 GBPThis proposal seeks funding for investigations into the structure and mechanical properties of carbon-nanostructures produced from natural biomass sources and by novel processing techniques. Carbon fibres produced by these routes are attractive since they are cheaper than those obtained by conventional routes (PAN or pitch-based), are derived from a renewable resource and since native cellulose is often already structured, it is an attractive precursor material. In addition to this, native sources of cellulose, such as bacterial, tunicate and derived sources from plant material in the form of whiskers, have fibre diameters in the nanometer range. This enables very slender fibres to be produced which can offer high stiffnesses and strengths. Other sources of nanofibres, such as from CNTs (carbon nanotubes) are expensive to produce, and as such there are significant advantages to the approaches we will investigate. The use of these materials for high performance composites will be investigated using non-contact methods and novel approaches to better understand the interface between materials. Low-cost approaches to the development of high-throughput methods of producing fibres will be addressed, with particular emphasis on enabling the enhancement of material properties from waste and cheaply generated biomass. Additional adventurous research will be conducted on the manipulation and deformation of the nanostructures using a FIB (Focussed Ion Beam) system. The project will fund a postdoctoral research associate for 4 years who will be based in the Materials Science Centre, School of Materials, University of Manchester. No systematic programme of research into the capability of these materials has been investigated in this manner and as such the impact will be both of mutual academic and industrial relevance. In terms of industrial involvement we have the support of five industrial companies (Borregaard - supplier; Technical Fibre Products / end user; Renishaw - technology and Lenzing - suppliers and technology).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02afe6126a471aae9f41c80ab3e9d4c9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02afe6126a471aae9f41c80ab3e9d4c9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:University of Manchester, Lenzing (Austria), The University of Manchester, Borregaard, Borregaard Uk Ltd +4 partnersUniversity of Manchester,Lenzing (Austria),The University of Manchester,Borregaard,Borregaard Uk Ltd,Technical Fibre Products Ltd,James Cropper (United Kingdom),University of Salford,LenzingFunder: UK Research and Innovation Project Code: EP/F036914/1Funder Contribution: 411,940 GBPThis proposal seeks funding for investigations into the structure and mechanical properties of carbon-nanostructures produced from natural biomass sources and by novel processing techniques. Carbon fibres produced by these routes are attractive since they are cheaper than those obtained by conventional routes (PAN or pitch-based), are derived from a renewable resource and since native cellulose is often already structured, it is an attractive precursor material. In addition to this, native sources of cellulose, such as bacterial, tunicate and derived sources from plant material in the form of whiskers, have fibre diameters in the nanometer range. This enables very slender fibres to be produced which can offer high stiffnesses and strengths. Other sources of nanofibres, such as from CNTs (carbon nanotubes) are expensive to produce, and as such there are significant advantages to the approaches we will investigate. The use of these materials for high performance composites will be investigated using non-contact methods and novel approaches to better understand the interface between materials. Low-cost approaches to the development of high-throughput methods of producing fibres will be addressed, with particular emphasis on enabling the enhancement of material properties from waste and cheaply generated biomass. Additional adventurous research will be conducted on the manipulation and deformation of the nanostructures using a FIB (Focussed Ion Beam) system. The project will fund a postdoctoral research associate for 4 years who will be based in the Materials Science Centre, School of Materials, University of Manchester. No systematic programme of research into the capability of these materials has been investigated in this manner and as such the impact will be both of mutual academic and industrial relevance. In terms of industrial involvement we have the support of five industrial companies (Borregaard - supplier; Technical Fibre Products / end user; Renishaw - technology and Lenzing - suppliers and technology).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b3f1ab72a1813d91ce055dc34dd7ee2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b3f1ab72a1813d91ce055dc34dd7ee2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2021Partners:Hanson Advisory Ltd, Hanson Advisory Ltd, Centre for Process Innovation CPI (UK), Designworks, University of Oxford +12 partnersHanson Advisory Ltd,Hanson Advisory Ltd,Centre for Process Innovation CPI (UK),Designworks,University of Oxford,Professor David Barrett Ltd,Designworks,CPI,Lenzing,Professor David Barrett Ltd,University of Southampton,Odstock Medical Limited,ODSTOCK MEDICAL LIMITED,Lenzing (Austria),Atlantic Therapeutics,University of Southampton,Atlantic TherapeuticsFunder: UK Research and Innovation Project Code: EP/S001654/1Funder Contribution: 487,020 GBPE-textiles are advanced textiles that include electronic functionality such as conductive tracks to sensing/actuating, communications and microprocessing. The emergence of advanced e-textiles offers opportunities for the self-management of health conditions with tangible benefits for the individual and healthcare providers. E-textiles can be used in many healthcare applications such as health monitoring (e.g. electrocardiogram (ECG) and Electroencephalography (EEG)) and treatment (e.g. pain relief, rehabilitation). The applicant and her team have developed a novel platform manufacturing method that enables the packaging of electronic components (e.g. microcontrollers, sensors) in ultra-thin die form that can be hidden within textile yarns. The team has also developed a patented dry fabric electrode technology using novel materials and fabrication methods for wearable medical devices offering the competitive advantages of comfort (no gel needed), ease of use, unobtrusive implementation, and being washable. The combination of these two technologies will enable wearable healthcare with improved user experience (e.g. comfort, unobtrusive, independent use) and improved compliance with treatment requirements. The project will enable the Fellowship applicant to lead a multi-disciplinary team to address the fundamental underlying research challenges of integration and durability to enable the e-textile technology to progress from the research laboratory towards real world applications and improve options for healthcare provision. The application of the advanced e-textile technology will be demonstrated through a wearable therapeutic clothing item for pain relief of osteoarthritis which is an age related disease affecting 8.75 million people in the UK. The collaboration with industrial partners and the engagement with project advisors (e.g. healthcare professionals and patient and public involvement representatives), end users and other key stakeholders will ensure industry/clinical relevance and establish collaborations for the follow on exploitation of the technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::92415423ac23385d726e3044c8ad706e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::92415423ac23385d726e3044c8ad706e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu