
Vestas Technologies UK
Vestas Technologies UK
7 Projects, page 1 of 2
assignment_turned_in Project2021 - 2026Partners:Vestas Technologies UK, Vestas (United Kingdom), FRAZER-NASH CONSULTANCY LTD, Babcock International Group (United Kingdom), Carl von Ossietzky University of Oldenburg +1 partnersVestas Technologies UK,Vestas (United Kingdom),FRAZER-NASH CONSULTANCY LTD,Babcock International Group (United Kingdom),Carl von Ossietzky University of Oldenburg,Imperial College LondonFunder: UK Research and Innovation Project Code: EP/V006436/1Funder Contribution: 1,290,140 GBPWind energy currently produces 18% of the UK's power but, in a drive towards a de-carbonised economy by 2050, this proportion must increase substantially over the next decade. The UK government has committed to increase offshore wind power capacity by 1-2 GW per year until 2030, reflecting the fact that the country contains some of the best locations for offshore wind in Europe. As the UK becomes more reliant upon wind energy, it is of increasing importance to improve both the efficiency and reliability of wind farms. Since wind turbines which lie in the wakes of upstream machines produce less power and experience higher fatigue loading than those upstream, there is scope to achieve this goal by improving our ability to predict the wakes generated by wind turbines and thereby design an optimally laid out wind farm given knowledge of the prevailing wind conditions. Our ability to optimise wind farms is currently hampered by an over-reliance on out-of-date empiricism. This proposal seeks to rectify this by developing physics-based modelling tools to better describe individual wind-turbine wakes as well as the interactions between interacting wakes within a wind farm. Offshore wind farms are particularly amenable to optimisation due to the stability of the prevailing wind conditions in comparison to onshore sites. Optimal spacing of wind turbines revolves around several factors. These are the desire to produce as much power as possible from a given site whilst at the same time minimising maintenance costs in response to fatigue damage caused by turbines sitting in the highly unsteady, turbulent wake of an upstream machine. This requires confident prediction of the spreading of wind turbine wakes plus a methodology to estimate the fatigue lifetime of wind turbine components in response to their predicted inflow conditions. In addition, there is the problem of predicting the global blockage in which the wind farm as a whole has the effect of diverting the wind over/around the wind farm meaning that the true inflow wind speed to the farm is not the same as the prevailing wind. Specifically, we will: 1. Perform innovative experiments in order to better understand the flow physics underpinning the spreading of turbulent wakes. This will involve exploring the interactions in the near wake between the coherence introduced at multiple length scales simultaneously by, for example, the tower, nacelle and blade-tip vortices. In addition we will explore the physics behind the spreading of the produced wake due to the phenomenon of entrainment, which is the process by which mass/energy is transferred from the background into the wake. In particular we will focus on the effect of atmospheric, and wake, turbulence on entrainment. 2. Take this new physical understanding and translate it into a physics-based model for the spreading of an individual wind-turbine wake. 3. Devise a methodology to make accurate predictions for the fatigue lifetime of vulnerable wind-turbine components (e.g. the gear box/trailing edge bond etc.) in response to the fluctuating inflow caused by atmospheric/wake turbulence. 4. Produce a model to correct for the global blockage that an entire wind farm represents to the oncoming wind. 5. Finally, develop a low-cost, physics-based wind farm optimisation tool and disseminate it to the UK's wind-energy sector. The model will take as inputs the details of the turbines to be erected, the atmospheric conditions at the specified site and the agreed strike price/MWh to be paid for the generated power. The output will be the optimal number and layout of wind turbines for an efficient offshore wind farm. We have attracted three partners from across the wind-energy sector who will play a vital role in ensuring that the output of this research is disseminated to the key stakeholders in the UK in a form that can be implemented by the industry straight away.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9db307fe450974895c5166949dde7878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9db307fe450974895c5166949dde7878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2026Partners:Airbus (United Kingdom), AIRBUS OPERATIONS LIMITED, Airbus Operations Limited, Vestas (United Kingdom), Cranfield University +3 partnersAirbus (United Kingdom),AIRBUS OPERATIONS LIMITED,Airbus Operations Limited,Vestas (United Kingdom),Cranfield University,Vestas Technologies UK,[no title available],CRANFIELD UNIVERSITYFunder: UK Research and Innovation Project Code: EP/V020218/1Funder Contribution: 1,378,770 GBPShape conveys information about a structure that is easily visualized and interpreted, and its dynamic, absolute measurement has significance in applications that span medicine (tracking the movement of minimally invasive instruments during surgery), wind turbines (monitoring turbine blade shape for active load alleviation control), aerospace (monitoring morphing wings, hydraulic hoses and electric cable looms), civil engineering (health monitoring of onshore and offshore structures), rail (monitoring tracks and rolling stock) and the sports and gaming industries (kinematic motion measurements). Direct fibre optic shape sensing (DFOSS) is a disruptive technology that has the potential to have a transformative impact. DFOSS allows the fibre path, as well as the structure to which the fibre is attached, to be followed through space in three dimensions. A key advantage of DFOSS is that the shape is determined directly within the sensing fibre, removing the dependence on strain transfer from the structure and thus the requirement for a model of the structure. Simple surface mounting of the sensing fibre, for example using adhesive tape, is sufficient. The DFOSS approach proposed here is based on Fibre Segment Interferometry, an approach pioneered by Cranfield University, which employs a simple, cost-effective and robust interrogation system exploiting well-proven telecoms laser diodes, detectors and optical fibre components to offer highly sensitive high-speed dynamic curvature measurements. Our initial implementation of the approach is suitable for relative measurement of the shape of small structures (of length upto 5 m), with a sensing gauge length in the range 1cm to 1m and has been successfully trialled on a 5m helicopter rotor rotating at ~400rpm in a ground test on an Airbus H135 helicopter. This proposal aims to solve the scientific challenges involved in extending the capabilities of this DFOSS approach to undertake absolute measurements of shape on larger scale objects, wind turbine blades and aircraft wings (measurement lengths up to 100m, with spatial resolution of the order 1m and data rates of up to 1 kHz). The challenges introduced by the scale of the objects and the anticipated rates of change of shape will require significant innovation, driving a radical evolution of the measurement configuration while maintaining the low cost and robust nature of the approach. Innovation is also required in the processing of the long lengths of multicore optical fibre at the heart of the approach and in the means for its deployment with a known alignment. The design and development of the approach will be informed by real measurement challenges in wind energy and aerospace, with the aim to demonstrate its use on the wing of Boeing 737, for example measuring the response to the jacking of the wing, and on a wind turbine, measuring blade shape changes and blade tip displacement, undertaking vibration characterisation of the blade, and damage location identification on a faulty blade.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::421560bcae01a03780e216ea1f8cb395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::421560bcae01a03780e216ea1f8cb395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2018Partners:EADS Airbus, Airbus Group Limited (UK), [no title available], Airbus (United Kingdom), University of Southampton +3 partnersEADS Airbus,Airbus Group Limited (UK),[no title available],Airbus (United Kingdom),University of Southampton,University of Southampton,Vestas (United Kingdom),Vestas Technologies UKFunder: UK Research and Innovation Project Code: EP/N020413/1Funder Contribution: 287,665 GBPWind turbines and aircraft are well known to be noisy machines that limits their acceptability to people living close to their operation, such as wind farms and airports. This limitation of course has significant implications for the growth of the aerospace and renewable energy sectors, which is vital to the UK economy as a whole. Wind turbines and aircraft have common noise generation mechanisms, namely the interaction between the airfoil blades and wings with turbulent flow around it. Conventional airfoils have straight leading and trailing edges, which according to recent research by the authors of this proposal, is the noisiest geometrical configuration. Significant noise reductions in airfoil noise have been obtained by introducing serrations (or undulations) into the trailing edge and leading edge geometries. In separate studies, introducing riblets onto the airfoil surface (very fine grooves) have also been shown to produce significant reductions in drag. It is reasonable to assume that airfoil drag and its noise radiation are connected, although this has never been formally investigated. An investigation into this association is one of the objectives of this work. This project will seek to combine these three technologies into a single airfoil design for the simultaneous reduction of leading edge and trailing edge noise whilst preserving aerodynamic performance. This optimisation process will necessitate a fundamental understanding into their noise reductions mechanisms individually in order to ensure that their combined benefits are at least additive or may combine to be more effective than the sum of their benefits individually. The outcome of this work is a new generation of aerofoils with noise control at the heart of their design."
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::48cf9da921161c6bf07104b12ee27476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::48cf9da921161c6bf07104b12ee27476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:University of Bristol, Vestas Technologies UK, Offshore Renewable Energy Catapult, DNV GL (UK), Offshore Renewable Energy Catapult +4 partnersUniversity of Bristol,Vestas Technologies UK,Offshore Renewable Energy Catapult,DNV GL (UK),Offshore Renewable Energy Catapult,DNV GL (UK),Vestas (United Kingdom),University of Bristol,OFFSHORE RENEWABLE ENERGY CATAPULTFunder: UK Research and Innovation Project Code: EP/N006127/1Funder Contribution: 549,539 GBPIn recent years, the cost of energy produced by renewable supplies has steadily decreased. This factor, together with socio-economical reasons, has made renewable energies increasingly competitive, as confirmed by industry growth figures. Considering wind turbines (WTs), there are some interesting technical challenges associated with the drive to build larger, more durable rotors that produce more energy, in a cheaper, more cost efficient way. The rationale for moving towards larger rotors is that, with current designs, the power generated by WTs is theoretically proportional to the square of the blade length. Furthermore, taller WTs operate at higher altitudes and, on average, at greater wind speeds. Hence, in general, a single rotor can produce more energy than two rotors with half the area. However, larger blades are heavier, more expensive and increasingly prone to greater aerodynamic and inertial forces. In fact, it has been shown that they exhibit a cubic relationship between length and mass, meaning that material costs, inertial and self-weight effects grow faster than the energy output as the blade size increases. In addition, larger blades also have knock-on implications for the design of nacelle components. The wind-field through which the rotor sweeps varies both in time and space. Consequently, the force and torque distributions for the blades exhibit strong peaks at frequencies which are integer multiples of the rotor speed. Additional peaks are induced by lightly damped structural modes. The loads on the blades combine to produce unbalanced loads on the rotor which are transmitted to the hub, main bearing and other drive-train components. These unbalanced loads are a major contribution to the lifetime equivalent fatigue loads for some components which could cause premature structural failure. As the size of the blades increase, the unbalanced loads increase and the frequency of the spectral peaks decrease. Hence, they have an increasing impact as the size of the turbines become bigger. In this scenario, the demand for improvements in blade design is evident. The notion of increasingly mass efficient turbines, which are also able to harvest more energy, is immediately attractive. The viability of a novel adaptive blade concept for use with horizontal axis WTs is studied in this project. By suitably tailoring the elastic response of a blade to the aerodynamic pressure it could be possible to improve a turbine's annual energy production, whilst simultaneously alleviating structural loads. These improvements are obtained in a passive adaptive manner, by exploiting the capabilities that structural anisotropy and geometrically induced couplings provide. In particular, induced elastic twist could be used to vary the angle of attack of the blade sections according to power requirements, i.e. the elastic twist is tailored to change with wind speed proportionally to the bending load. The adaptive behaviour allows the blade geometry to follow the theoretically optimum shape for power generation closely (which varies as a function of the far field wind speed). This concept retains the load alleviation capability of previously proposed designs, whilst simultaneously enhancing energy production. Structurally, the adaptive behaviour is achieved by merging the bend-twist coupling capabilities of off-axis composite plies and of a swept blade planform. Potentially, an adaptive blade, controlled only by generator torque, could perform to power standards comparable to that of the current state-of-the-art-while greatly reducing complexity, cost and maintenance of wind turbines, by challenging the need for active pitch control systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ed83e588cb0c6aa9358f64f27368b901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ed83e588cb0c6aa9358f64f27368b901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Airbus Defence and Space GmbH, Vestas Technologies UK, University of Southampton, Airbus (Germany), University of Southampton +7 partnersAirbus Defence and Space GmbH,Vestas Technologies UK,University of Southampton,Airbus (Germany),University of Southampton,Added Scientific Ltd,Dyson Appliances Ltd,Dyson Limited,Vestas (United Kingdom),[no title available],Added Scientific Ltd,Airbus Defence and Space GmbHFunder: UK Research and Innovation Project Code: EP/V00686X/1Funder Contribution: 365,599 GBPIntroducing porosity onto an aerofoil has been shown to have a significant influence on the boundary layer and provide significant reductions in its noise radiation. This proposal describes a multi-disciplinary research project aimed at understanding and exploiting the interactions between porous aerofoils and the boundary layers developing over them for the purpose of optimising noise reductions without compromising aerodynamic performance. The use of adaptive manufacturing technology will be investigated for providing the optimum porosity at different operating conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0a65a372604db2252ce3f110d8549fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0a65a372604db2252ce3f110d8549fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right