Powered by OpenAIRE graph
Found an issue? Give us feedback

Oakdene Hollins (United Kingdom)

Oakdene Hollins (United Kingdom)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/L002388/1
    Funder Contribution: 67,327 GBP

    To achieve carbon reduction targets as we move increasingly away from the use of fossil fuels, the infrastructure of electricity generation and transport will change as wind generation and electric vehicles become more important. Both of these require very specific materials, the so-called E-tech elements, and the ability of the mining industry to supply these is a matter of strategic significance. The provision of new technology on the required scale carries a significant risk of failure to secure materials needed to deliver the politically-agreed targets. Our proposal sets out to develop a generic approach to understanding and modelling the supply chain through Material Flow Analysis, uniquely adding a geological component with associated spatial visualisation and uncertainty. We will use standard methodology (ISO 14041), which is part of the ISO 14001 family; and these management systems are familiar to stakeholders. We add to these layers descriptions of geological (and so geographical) distribution of sources of selected E-tech elements, following through to consider the implications of space (geographical location) and time (including lead times from exploration through mining to product) at all stages of the supply chain. Using this approach, we will produce a tool that enables users to understand where bottlenecks arise in the supply chain, informing decisions that relate to resource use that include end-of-life recovery of these elements and providing constraints that inform policy makers. Our proposal involves close liaison with key representatives of non-academic users of E-tech elements.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M011429/1
    Funder Contribution: 549,872 GBP

    Rare earth elements (REE) are the headline of the critical metals security of supply agenda. All the REE were defined as critical by the European Union in 2010, and in subsequent analysis in 2014. Similar projects in the UK and USA have highlighted 'heavy' REE (HREE - europium through to lutetium) as the metals most likely to be at risk of supply disruption and in short supply in the near future. The REE are ubiquitous within modern technologies, including computers and low energy lighting, energy storage devices, large wind turbines and smart materials, making their supply vital to UK society. The challenge is to develop new environmentally friendly and economically viable, neodymium (Nd) and HREE deposits so that use of REE in new and green technologies can continue to expand. The principal aims of this project are to understand the mobility and concentration of Nd and HREE in natural systems and to investigate new processes that will lower the environmental impact of REE extraction and recovery. By concentrating on the critical REE, the research will be wide ranging in the deposits and processing techniques considered. It gives NERC and the UK a world-leading research consortium on critical REE, concentrating on deposit types identified in the catalyst phase as most likely to have low environmental impact, and on research that bridges the two goals of the SoS programme. The project brings together two groups from the preceding catalyst projects (GEM-CRE, MM-FREE) to form a new interdisciplinary team, including the UK's leading experts in REE geology and metallurgy, together with materials science, high/low temperature fluid geochemistry, computational simulation/mineral physics, geomicrobiology and bioprocessing. The team brings substantial background IP and the key skills required. The research responds to the needs of industry partners and involves substantive international collaboration as well as a wider international and UK network across the REE value chain. The work programme has two strands. The first centres on conventional deposits, which comprise all of the REE mines outside China and the majority of active exploration and development projects. The aim is to make a step change in the understanding of the mobility of REE in these natural deposits via mineralogical analysis, experiments and computational simulation. Then, based on this research, the aim is to optimise the most relevant extraction methods. The second strand looks to the future to develop a sustainable new method of REE extraction. The focus will be the ion adsorption deposits, which could be exploited with the lowest environmental impact of any of the main ore types using a well-controlled in-situ leaching operation. Impact will be immediate through our industry partners engaged in REE exploration and development projects, who will gain improved deposit models and better and more efficient, and therefore more environmentally friendly, extraction techniques. There will be wider benefits for researchers in other international teams and companies as we publish our results. Security of REE supply is a major international issue and the challenges tackled in this research will be relevant to practically all REE deposits. Despite the UK not having world class REE deposits itself, the economy is reliant on REE (e.g. the functional materials and devices industry is worth ~£3 Bn p.a.) and therefore the UK must lead research into the extraction process. Manufacturers who use REE will also benefit from the research by receiving up to date information on prospects for future Nd and HREE supply. This will help plan their longer term product development, as well as shorter term purchasing strategy. Likewise, the results will be useful to inform national and European level policy and to interest, entertain and educate the wider community about the natural characters and importance of the REE.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V029746/1
    Funder Contribution: 3,673,170 GBP

    Summary The National Interdisciplinary Circular Economy Hub will be led by Co-Directors and joint PI's Professors Peter Hopkinson and Fiona Charnley to harness and scale-up the UK's leading research capabilities, providing the evidence base, inspiration and capacity to accelerate the transition towards a global circular economy (CE). To achieve this ambitious vision, the CE-Hub will deliver a User Engagement Strategy targeted to meet the differing needs of three user groups NICER Circular Economy Centre consortia 2) CE research Collaborators, Experts and End Users 3) CE Communities and Wider Society These objectives will be delivered through five pillars. Pillar One: CE-Observatory. We will develop and deliver the UKs first National CE-Observatory to create a systemic data and modelling framework for the NICER programme. The observatory will provide an evidence base to a) improve data quality and consistency across the NICER programme and wider policy initiatives b) improve modelling of resource flows across the UK relevant to CE system level interventions , c) quantify CE resource productivity, value creation and capture opportunities at scale, d) establish a common, agreed and consistent set of CE metrics and indicators and e) provide a source of evidence for a UK CE Road Map. Pillar 2: Knowledge Platform. We will develop a CE Knowledge Platform to coordinate programme outputs and a repository of national research, knowledge, practical demonstration and implementation tools and enablers. Outcomes and impacts of the CE knowledge platform include a) develop shared understanding of CE in theory and practice, principles and methods, b) improve the co-ordination, design and evaluation of CE case studies including detailed evidence of implementation pathways and opportunity c) generate knowledge and insight to inform key research, policy and industry solutions, d) identify UKRI and Innovate UK funding priorities, [c] create a gateway between the UK and International CE communities Pillar 3: Impact and Innovation. The CE-Hub will facilitate mechanisms of interdisciplinary, cross-value chain collaboration and solution innovation; contributing towards the co-creation of a UK CE Road map. Outcomes and impacts include a) increase the UK CE research and innovation capacity, b) build capability and experience of interdisciplinary CE collaboration c) create new CE value propositions, products, services and demonstrators capable of scaling and d) advance understanding of the pathways, enabling mechanisms and roadmaps to implementation. Pillar 4: Inclusive Community and Pillar 5: Capacity Building. The CE-Hub will build and coordinate an inclusive and capable CE community to enable CE transformation through collaboration and communication. It will identify CE capability and skills gaps and inform future funding and training opportunities. Outcomes and impacts include a) to embed multi-disciplinary understanding of CE principles, opportunities and pathways through a highly engaged community, b) the synthesis of evidence directed towards key stakeholder questions, c) to define CE skills, capacity requirements and career pathways d) to contribute to an increase in ECRs pursuing CE related careers and e) increase general consumer awareness of CE and influence informed behaviour and decision making.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z532873/1
    Funder Contribution: 11,839,500 GBP

    The Circular Economy requirements and sustainability goals have been set out by the UK government and the United Nations to address the climate crisis and maintain our standard of living. The environmental impact from the global consumption of engineering materials is expected to double in the next forty years (OECD: Global Material Recourses to 2060, 2018), while annual waste generation is projected to increase by 70% by 2050 (World Bank What a Waste 2.0 report, 2018). A radical departure from traditional forward manufacturing is needed that no longer exclusively focuses on the original manufacturing process and the end of life dispose of manufactured products, parts, and materials. Processes are needed that will significantly prolong the useful life of engineering and especially critical materials (minerals with high economic vulnerability and high global supply risk e.g. rare earth elements for batteries, magnets and medical devices) by increasing the effectiveness of reuse, repurpose, repair, remanufacture, and recycle (Re-X) manufacturing processes. These Re-X processes are currently 3-6 times more labour intensive than traditional manufacturing processes. They are often not economic resulting in many engineering materials being disposed on landfill sites, degraded, or incinerated. UK businesses could benefit by up to £23 billion per year through low cost or no cost improvements in the efficient use of resources. The vision of this hub is to pursue an integrated, holistic approach toward creating a new manufacturing ecosystem for circular resource use of high value products through advances in AI and intelligent automation, empowering the UK to be a world leader in circular manufacturing. To deliver this ambition the hub will focused on two grand challenges: GC1: Radically transform the sustainable use of critical materials. (Goal: >75% Critical components reuse; >20% critical material use decrease; >50% component reclaim increase). GC2: Radically improve the productivity of Re-X manufacturing processes on par with or exceeding traditional forward manufacturing processes (Goal: >10 times improvement). To address these, the hub will establish a truly interdisciplinary team cutting across Manufacturing, Robotics, AI and Automation, Materials Science, Chemical Engineering, Chemistry, Economics, and Life Cycle Assessment.?The hub will focus on three major fronts: Research excellence, community building and user engagement. The new research required to address the grand challenges and overcome the barriers and limitations preventing the transition to a truly circular manufacturing ecosystem will investigate: - New smart processes for disassembly, remanufacturing, separation, and recovery of critical products, components, and ultimately materials. - New sensing and analysis processes to track and determine the state of critical materials throughout their life. - New design methodologies for circular manufacturing. - New testing and validation methods to certify the remaining useful life of crucial products, components, and materials. - New circular Re-X business models. Our research programme will enable rapid scale up of Robotics and AI solutions that are compatible with sector practice, extensible via modular design, and can be repurposed initially in four flagship sector scenarios: energy, medical devices, electric drives, and large structures. Consequently, this Hub will directly address the 80% of the environmental impact of high-value products (Circular Economy Action Plan, European Union, 2020), and save more than 8M tonnes of CO2 emissions annually (HM Government Building our Industrial Strategy report, 2017).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/L002280/1
    Funder Contribution: 96,635 GBP

    Rare Earth Elements (REE) are used in many low carbon technologies, ranging from low energy lighting to permanent magnets in large wind turbines and hybrid cars. They are almost ubiquitous: in every smartphone and computer. Yet 97% of World supply comes from a few localities in China. Rare earth prices are volatile and subject to political control, and but substitute materials are difficult to design. The most problematic REEs to source are neodymium and the higher atomic number 'heavy' rare earths - a group dubbed the 'critical rare earths'. However, with many potential rare earth ore deposits in a wide variety of rocks, there is no underlying reason why rare earths should not be readily and relatively cheaply available. The challenge is to find and extract rare earths from the right locations in the most environmentally friendly, cost efficient manner to give a secure, reasonably priced, responsibly sourced supply. In this project, the UK's geological research experts in rare earth ore deposits team up with leaders in (a) geological fluid compositions and modelling, (b) using fundamental physics and chemistry of minerals to model processes from first principles and (c) materials engineering expertise in extractive metallurgy. This community brings expertise in carbonatites and alkaline rocks, some of the Earth's most extreme rock compositions, which comprise the majority of active exploration projects. The UK has a wealth of experience of study of economic deposits of rare earths (including the World's largest deposit at Bayan Obo in China) which will be harnessed. The team identify that a key issue is to understand the conditions that concentrate heavy rare earths but create deposits free from thorium and uranium that create radioactive tailings. Results so far from alkaline rocks and carbonatites are contradictory. A workshop will bring together the project team and partners, including a leading Canadian researcher on rare earth mobility, to debate the results and design experiments and modelling that can be done in the UK to solve this problem. Understanding, and then emulating how REE deposits form, may provide us with the best clues to extract REEs from their ores. One important route is to understand the clay-rich deposits in China which provide most of the World's heavy rare earths; they are simple to mine, not radioactive, and need little energy to process. The workshop will consider how these deposits form, how we can use our experimental and modelling expertise to understand them better and predict where companies should explore for them. The other main problem, restricting development of almost all rare earth projects, is the difficulty of efficient separation of rare earth ore minerals from each other and then extraction of the elements from those ores. A work shop on geometallurgy (linking geology through mining, processing, extractive metallurgy and behaviour in the environment) will be used to explore how geological knowledge can be used (a) to predict the processing and environmental characteristics of different types of ores and (b) to see if any new potential processing methods might be tried, taking advantage of fundamental mineralogical properties. The two workshops link geology to metallurgy, using one to inform the other. This project will form the basis for an international collaborative consortium bid to NERC. It will also catalyse a long-term UK multidisciplinary network linking rare earth researchers to users, and promote the profile of the UK in this world-wide important field. Before the team design the research programme, they will consult academic colleagues working on new applications of rare earths and rare earth recycling, plus exploration companies, users further along the up the supply chain and policy makers. This will ensure that the proposals developed have maximum impact on future supply chain security.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.