
National University of La Plata
National University of La Plata
4 Projects, page 1 of 1
assignment_turned_in Project2020 - 2024Partners:INPA, National Polytechnic School (Ecuador), National University of La Plata, University of Salford, University of Salford +6 partnersINPA,National Polytechnic School (Ecuador),National University of La Plata,University of Salford,University of Salford,UNLP,Pompeu Fabra University,Pompeu Fabra University,Escuela Politécnica Nacional,INPA,Escuela Politécnica NacionalFunder: UK Research and Innovation Project Code: NE/T000341/1Funder Contribution: 647,969 GBPNew World primates live in the tropical regions of Central and South America, and include such well-known and charismatic species as spider monkeys, howler monkeys, marmosets and capuchins. Today, there are more than 170 species known in five families, which collectively exhibit a broad range of different body sizes, diets and activity. Remarkably, all this diversity originated from a single common ancestor that reached South America from Africa 35-45 million years ago, probably by being transported over sea on a raft of vegetation. Why and how did this ancestor give rise to all the varied species that make up modern New World primate radiation? What were the drivers leading to the diversification of the different families? Were abiotic factors like changes in climate, the uplift of the Andes mountains, and the development of the Amazon river, or were biotic factors (competition with other mammals) more important in driving diversification? Can we identify when and why there were changes in body size, diet and activity pattern in different New World primate groups? Our proposed project will attempt to answer these questions. To do so, we will combine two very different, but complementary, types of data: genomic data, which provides detailed information on living species, and fossil data, which provides (often very incomplete) information on past diversity. Previous studies have usually used either genomic data or fossil data, but ours will combine the two, to take advantage of their different strengths and to compensate for each other's weaknesses. Firstly, we will examine the genomes of different New World primate species to see if we can identify genes relating to traits like diet, body size and activity pattern. By doing so, we will be able to infer how these traits have changed through time in the different New World primate groups. Secondly we will produce a new evolutionary tree (phylogeny) of all the living New World primate species, using large amounts of genomic data and sophisticated methods to produce the most complete and accurate phylogeny of the group, and we will use "molecular clocks" to infer divergence times for when different lineages split from one another. With our new phylogeny and divergence times, we will examine how the rate of diversification has varied through time, and whether very high or low rates of diversification coincide with periods of environmental change. We will also identify previously unrecognised species and reassess the taxonomy of all known species. This information will be key to conservation efforts, by helping identify the species most in need of protection to conserve maximum biodiversity. Thirdly, we will use data from the fossil record to model how living and extinct lineages of New World primates have diversified through time. This data can be compared with the pattern of diversification indicated by the phylogeny of living New World primates, to see if they are broadly similar. If they show major differences, this suggests that extinction has played a key role in New World primate evolution. We will also use the fossil record to test the hypothesis that New World primates outcompeted superficially "primate-like" mammals (actually, relatives of modern marsupials) that were already present in South America when the New World primate ancestor arrived from Africa. Our project will massively increase our understanding of New World primate evolution, shed new light on diversification and evolutionary processes in general, and help identify those New World primates most vulnerable to extinction. In doing so our findings will be of interest to a wide range of scientists, including evolutionary biologists, genomicists, ecologists and palaeontologists. Because our project, by rigorously clarifying NWP species numbers and boundaries, our results will also have broader practical utility for conservation practitioners and policy makers in governmental and non-governmental agencies.
more_vert assignment_turned_in Project2008 - 2011Partners:CARDIFF UNIVERSITY, National University of La Plata, Cardiff University, UNLP, Cardiff UniversityCARDIFF UNIVERSITY,National University of La Plata,Cardiff University,UNLP,Cardiff UniversityFunder: UK Research and Innovation Project Code: NE/F004788/1Funder Contribution: 294,962 GBPAnatomical evidence plays an important role in elucidating the relationships of plant fossils and in the ways in which plants grew and functioned -physiology. Silicification of plant tissues results in the most faithful preservation of cellular detail and occurs in two principal ways, within volcaniclastic deposits by precipitation of silica dissolved from ashes or as silica supersaturated waters flow from hot springs. The latter is particularly important because eruptions cause flooding of vegetation in the vicinity of vents and thus not only engulfs growing plants but also animals and microbes, even whole ecosystems in situ. Such occurrences are rare in the fossil record, but provide unique snapshots of past life. Perhaps the best known hot spring deposit is the Lower Devonian Rhynie Chert of Aberdeenshire, Scotland. However, studies of present-day vegetation growing in the vicinity of hot springs e.g. Yellowstone, USA and Iceland, demonstrate that the plants (and associated ecosystems) that are most likely to be flooded are usually hydrophytes or tolerant of flooding and are capable of withstanding normally high and potentially toxic levels of salt, heavy metals and pH extremes. Indeed similar plant and animal associations are found around brackish water associated with coastal marshes or ephemeral evaporation dominated inland water bodies (e.g. salt lakes). This suggests that fossiliferous hot spring deposits such as the Rhynie Chert do not reflect the most common vegetation but are highly specialised. However testing of such an hypothesis at Rhynie is highly unsatisfactory because we have no fossils from contemporaneous rocks in coastal or lacustrine settings, the Rhynie Chert plants are dominated by soft tissues unlikely to be preserved unless permineralised and, apart from a lycophyte, they have no living relatives, the evolution of the remaining lineages of vascular plants having occurred in the intervening 400 million years. Exploration by gold mining companies has identified numerous, more-recent (Tertiary & Mesozoic) plus one earlier Silurian, hot spring deposits with potentially fossiliferous silica sinters and associated wetland environments. By far the most extensive are confirmed richly-fossiliferous Jurassic (c. 200Ma) deposits within the Deseado Massif, Patagonia. Preliminary results indicate that unlike the Rhynie Chert, some of the Patagonian fossils can be related to living forms e.g. the monkey puzzle conifer family, and further there are richly-fossiliferous rocks recording the vegetation peripheral to the hot springs, bordering lakes and rivers, plus in stressed environments such as coastal fringes. A major component of the proposed project will be to reconstruct the Jurassic hot spring ecosystem including plants, bacteria, fungal decomposers, algae and animals. Building on this, following plant identification with assistance of Argentine colleagues, we will compare diversity (species list) from the various types of rock and estimate the degree to which the hot spring ecosystems are typical of either 'normal' dry-land/wetland, or salinity stressed wetland ecosystems. Following detailed anatomical description we will detect any modifications at the cellular level which are indicative of adaptation to water stress/physiological drought, or are connected with withstanding heavy metal toxicity. Similar but probably less rigorous analyses, due to time constraints, will be applied to Carboniferous, Cretaceous and Miocene hot springs, to attempt to demonstrate convergence in anatomical and physiological responses in disparate plant lineages. Particularly exciting is the prospect of the discovery of 3-dimensionally preserved angiosperms at the Chinese locality, Dongfanghong, part of an extensive gold field situated within the same Lower Cretaceous province and close to localities that have yielded the earliest semiaquatic angiosperms plus birds and feathered dinosaurs.
more_vert assignment_turned_in Project2016 - 2023Partners:RU, FEI UK Ltd, China University of Geosciences, Eotvos Lorand University, University of Exeter +36 partnersRU,FEI UK Ltd,China University of Geosciences,Eotvos Lorand University,University of Exeter,University of Adelaide,uB,Rutgers University,UNIVERSITY OF EXETER,Claude Bernard University Lyon 1,Claude Bernard University Lyon 1,WWU,Polish Geological Institute,Jet Propulsion Laboratory,University of Copenhagen,Applied Biosystems,University of Copenhagen,Leibniz Institute for Applied Geophysics,National University of La Plata,PIG,George Mason University,Leibniz Institute for Applied Geophysics,University of Lyon 1,CNRS,FEI UK Ltd,Utrecht University,CUG,University of Bourgogne,Merlin Energy Resources Ltd,UNLP,TU Delft,University of Exeter,ELTE,Natural History Museum of Geneva,Merlin Energy Resources Ltd,CNRS,JET Propulsion Laboratory,Leibniz Institute for Applied Geophysics,University of Burgundy,George Mason University,Rutgers State University of New JerseyFunder: UK Research and Innovation Project Code: NE/N018508/1Funder Contribution: 1,838,980 GBPWe propose a large-scale, multi-faceted, international programme of research on the functioning of the Earth system at a key juncture in its history - the Early Jurassic. At that time the planet was subject to distinctive tectonic, magmatic, and solar system orbital forcing, and fundamental aspects of the modern biosphere were becoming established in the aftermath of the end-Permian and end-Triassic mass extinctions. Breakup of the supercontinent Pangaea was accompanied by creation of seaways, emplacement of large igneous provinces, and occurrence of biogeochemical disturbances, including the largest magnitude perturbation of the carbon-cycle in the last 200 Myr, at the same time as oceans became oxygen deficient. Continued environmental perturbation played a role in the recovery from the end-Triassic mass extinction, in the rise of modern phytoplankton, in preventing recovery of the pre-existing marine fauna, and in catalysing a 'Mesozoic Marine Revolution'. However, existing knowledge is based on scattered and discontinuous stratigraphic datasets, meaning that correlation errors (i.e. mismatch between datasets from different locations) confound attempts to infer temporal trends and causal relationships, leaving us without a quantitative process-based understanding of Early Jurassic Earth system dynamics. This proposal aims to address this fundamental gap in knowledge via a combined observational and modelling approach, based on a stratigraphic 'master record' accurately pinned to a robust geological timescale, integrated with an accurate palaeoclimatic, palaeoceanographic and biogeochemical modelling framework. The project has already received $1.5M from the International Continental Drilling Programme towards drilling a deep borehole at Mochras, West Wales, to recover a new 1.3-km-long core, representing an exceptionally expanded and complete 27 My sedimentary archive of Early Jurassic Earth history. This core will allow investigation of the Earth system at a scale and resolution hitherto only attempted for the last 65 million years (i.e. archive sedimentation rate = 5 cm/ky or 20 y/mm). We will use the new record together with existing data and an integrative modelling approach to produce a step-change in understanding of Jurassic time scale and Earth system dynamics. In addition to order of magnitude improvements in timescale precision, we will: distinguish astronomically forced from non-astronomically forced changes in the palaeoenvironment; use coupled atmosphere-ocean general circulation models to understand controls on the climate system and ocean circulation regime; understand the history of relationships between astronomically forced cyclic variation in environmental parameters at timescales ranging from 20 kyr to 8 Myr, and link to specific aspects of forcing relating to solar energy received; use estimated rates and timing of environmental change to test postulated forcing mechanisms, especially from known geological events; constrain the sequence of triggers and feedbacks that control the initiation, evolution, and recovery from the carbon cycle perturbation events, and; use Earth system models to test hypotheses for the origins 'icehouse' conditions. Thirty six project partners from 13 countries substantially augment and extend the UK-based research.
more_vert assignment_turned_in Project2022 - 2025Partners:INTA-CONICET, National University of La Plata, NTU, National University of Rosario (UNR), SAMIGE (Civil Assoc General Microbiol) +10 partnersINTA-CONICET,National University of La Plata,NTU,National University of Rosario (UNR),SAMIGE (Civil Assoc General Microbiol),Nat Sci and Technical Res (CONICET),Ministry of Agri, Livestock & Fish,UNLP,UNQ,National University of Rosario,CABIO,UNRC,SAMIGE (Civil Assoc General Microbiol),CABIO,University of NottinghamFunder: UK Research and Innovation Project Code: BB/V018205/1Funder Contribution: 10,162 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert