
BURO HAPPOLD LIMITED
BURO HAPPOLD LIMITED
44 Projects, page 1 of 9
assignment_turned_in Project2017 - 2022Partners:University of Bath, Building Materials and Tech Promo Counc, Green Business Certification Institute, AECOM, University of Bath +16 partnersUniversity of Bath,Building Materials and Tech Promo Counc,Green Business Certification Institute,AECOM,University of Bath,SWECO UK,AECOM Limited (UK),Buro Happold,SWECO UK,Indian Institute of Technology (Delhi),IITR,Building Materials and Tech Promo Counc,Buro Happold Limited,Green Business Certification Institute,Central Building Research Institute,R-INFRA,R-INFRA,UK Aecom,IITD,BURO HAPPOLD LIMITED,Indian Institute of Technology RoorkeeFunder: UK Research and Innovation Project Code: EP/R008612/1Funder Contribution: 985,227 GBPIn many developing countries, rising energy demand, and consequently carbon emissions, is seen as an unequivocal indicator of increasing prosperity. This trajectory has important consequences not just for global carbon emissions but for the ability of countries such as India to achieve its developmental goals. This is because, in most developing countries, growth in energy demand far outstrips growth in supply due to the large capital investment required to build energy infrastructure. Thus, even people *with* access to energy networks often find that they are unable to meet their comfort needs due to supply shortages. However, the most critical problem is often not mean demand - e.g. mean per capita energy demand in India is only 13% that of the UK - but rather **peak demand** as it lays immense stress on already fragile networks. Hence, people's ability to attain comfortable internal conditions is compromised at the precise time that they need it the most - during extreme heat or cold. This project directly addresses the problem of peak demand reduction by aiming to eliminate peak demand in buildings, where it is created. In most developing countries, the vast majority of the building stock of the future is still to be built, so there is a real opportunity to decouple economic growth from building energy use whilst ensuring comfortable conditions. We aim to achieve this through laying the foundations for a **new science of zero peak energy building design** for warm climates. This will be achieved through a careful consideration of the weather signal (now and in the future) which is critical for any realistic assessment of mean dan peak energy demand. A second focus is on delivering a method of construction that is compatible not only with the Indian climate but also its building practices and social customs, thus avoiding the trap of an "imported" standard. This will be delivered through the creation of 60 pathways for a range of building types in 6 cities comprising different climates. Finally, we will also consider how loads can be moved between buildings to achieve a smooth demand profile at network level.
more_vert assignment_turned_in Project2009 - 2018Partners:NTNU (Norwegian Uni of Sci & Technology), AECOM, Waseda University, EDF, Kansas State University +64 partnersNTNU (Norwegian Uni of Sci & Technology),AECOM,Waseda University,EDF,Kansas State University,Dept for Env Food & Rural Affairs DEFRA,Ove Arup Ltd,Buro Happold Limited,Arup Group Ltd,Zero Carbon Hub,Norwegian University of Science and Technology,Royal Inst of British Architects RIBA,Pell-Frischmann Consultants,Waseda University,Johnson Controls Ltd,Massachusetts Institute of Technology,Faber Maunsell,OSU-OKC,PNW,University of California, Berkeley,Johnson Controls (United Kingdom),MIT,University of California, San Diego,University of California Berkeley,Zero Carbon Hub,Faber Maunsell,Communities and Local Government,CIBSE,University of California, San Diego,BURO HAPPOLD LIMITED,DTU,Lighting Education Trust,Dept for Env Food & Rural Affairs DEFRA,Lighting Education Trust,Hoare Lea Ltd,UCL,Hoare Lea,Technical University of Denmark,Norwegian University of Science and Technology Science and Technology,Dalhousie University,Purdue University,Communities and Local Government,Johnson Controls (United States),The National Energy Foundation,Johnson & Johnson (United States),Électricité de France (France),Technical University of Denmark,Georgia Inst of Tech,Hoare Lea Ltd,Department for Environment Food and Rural Affairs,University of California, San Diego,EDF,Purdue University System,Oklahoma State University System,J&J,Royal Institute of British Architects,NEF,LBNL,Helsinki University of Technology,Barratt Developments,CIBSE,GT,Lawrence Berkeley National Laboratory,Universität Karlsruhe,Buro Happold,Barratt Developments PLC,Massachusetts Institute of Technology,Kansas State University,Pell-Frischmann ConsultantsFunder: UK Research and Innovation Project Code: EP/H009612/1Funder Contribution: 5,814,410 GBPReducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.
more_vert assignment_turned_in Project2011 - 2012Partners:BURO HAPPOLD LIMITEDBURO HAPPOLD LIMITEDFunder: UK Research and Innovation Project Code: 450010Funder Contribution: 12,000 GBPThe public description for this project has been requested but has not yet been received.
more_vert assignment_turned_in Project2011 - 2012Partners:BURO HAPPOLD LIMITED, Buro Happold LimitedBURO HAPPOLD LIMITED,Buro Happold LimitedFunder: UK Research and Innovation Project Code: 400255Funder Contribution: 62,380 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert assignment_turned_in Project2013 - 2019Partners:Cargill Plc (UK), H J Heinz Co Ltd., Iceland Foods Ltd, Doug Marriott Associates, Tesco +68 partnersCargill Plc (UK),H J Heinz Co Ltd.,Iceland Foods Ltd,Doug Marriott Associates,Tesco,Thorntons Budgens,WRAP,WR Refrigeration,Buro Happold,Heineken International B.V.,Kelvion Searle,Technology Strategy Board,Monodraught Ltd,Food Storage and Distribution Federation,Heineken International B.V.,CAMPDEN BRI,PepsiCo (Global),PepsiCo,Waitrose,Food & Drink Federation,Dept for Env Food & Rural Affairs DEFRA,IFST,BURO HAPPOLD LIMITED,Modern Built Environment,Department for Environment Food and Rural Affairs,Kellogg Europe Trading Limited,Environmental Sustainability KTN,Buro Happold Limited,Chartered Inst of Logistics &Transport,Brunel University London,H J Heinz Co Ltd.,Waitrose,British Refrigeration Association,Biosciences KTN,Biosciences KTN,The Sustainability Consortium,Hydropac Ltd,The Sustainability Consortium,Thorntons Budgens,Maintenance Management Ltd,Dept for Env Food & Rural Affairs DEFRA,CHEMISTRY INNOVATION LIMITED,Chartered Inst of Logistics & Transport,Tesco,Centre for Process Innovation CPI (UK),CPI,Marks and Spencer,Hydropac Ltd,GEA Searle,Premier Foods Group Ltd,WR Refrigeration,Kraft Foods Worldwide Corporate HQ,Kellogg Europe Trading Limited,Food Storage and Distribution Federation,WRAP (Waste and Resources Action Prog),Heat Pump Association,Premier Foods Group Ltd,Monodraught Ltd,PIL,Food and Drink Federation,MARKS AND SPENCER PLC,Campden BRI,BDA,Maintenance Management Ltd,Doug Marriott Associates Ltd,Iceland Foods Ltd,CPI Ltd,Process Integration Limited,Institute of Food Science and Technology,Brunel University,Kraft Foods Worldwide Corporate HQ,Chemistry Innovation,Cargill PlcFunder: UK Research and Innovation Project Code: EP/K011820/1Funder Contribution: 5,699,190 GBPThe UK food chain, comprising agricultural production, manufacturing, distribution, retail and consumption, involves more than 300,000 enterprises and employs 3.6 million people. The food and drink industry is the largest manufacturing sector, employing 500,000 people and contributing £80 billion to the economy. It is also estimated that the food chain is responsible for 160 MtCO2e emissions and 15 Mt of food waste, causing significant environmental impacts. Energy is an important input in all stages of the food chain and is responsible for 18% of the UK's final energy demand. In recent years, progress has been made in the reduction of energy consumption and emissions from the food chain primarily through the application of well proven technologies that could lead to quick return on investment. To make further progress, however, significant innovations will have to be made in approaches and technologies at all stages of the food chain, taking a holistic view of the chain and the interactions both within the chain and the external environment. The EPSRC Centre for Sustainable Energy Use in Food Chains will make significant contributions in this field. It will bring together multidisciplinary research groups of substantial complementary experience and internationally leading research track record from the Universities of Brunel, Manchester and Birmingham and a large number of key stakeholders to investigate and develop innovative approaches and technologies to effect substantial end use energy demand reductions. The Centre will engage both in cutting edge research into approaches and technologies that will have significant impacts in the future, leading towards the target of 80% reduction in CO2 emissions by 2050, but also into research that will have demonstrable impacts within the initial five year lifetime of the Centre. Taking a whole systems approach, the research themes will involve: i) Simulation of energy and resource flows in the food chain, from farm-gate to plate to enable investigations of energy and resource flows between the stages of the chain and the external environment, and facilitate overall energy and resource use optimisation taking into consideration the impact of policy decisions, future food and energy prices and food consumption trends. ii) Investigation of approaches and technologies for the reduction of energy use at all stages of the chain through reduction of the energy intensity of individual processes and optimisation of resource use. It is expected that a number of new innovative and more efficient technologies and approaches for energy reduction will be developed in the lifetime of the Centre to address processing, distribution, retail and final consumption in the home and the service sector. iii) Identification of optimal ways of interaction between the food chain and the UK energy supply system to help manage varying demand and supply through distributed power generation and demand-response services to the grid. iv) Study of consumer behaviour and the impact of key influencing factors such as changing demographics, increased awareness of the needs and requirements of sustainable living, economic factors and consumption trends on the nature and structure of the food chain and energy use. Even though the focus will be on the food chain, many of the approaches and technologies developed will also be applicable to other sectors of the economy such as industry, commercial and industrial buildings and transportation of goods. The Centre will involve extensive collaboration with the user community, manufacturers of technology, Government Departments, Food Associations and other relevant research groups and networks. A key vehicle for dissemination and impact will be a Food Energy and Resource Network which will organise regular meetings and annual international conferences to disseminate the scientific outputs and engage the national and international research and user communities
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right