Powered by OpenAIRE graph
Found an issue? Give us feedback

Viavi Solutions (United Kingdom)

Viavi Solutions (United Kingdom)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/Y004086/1
    Funder Contribution: 891,184 GBP

    Reconfigurable intelligent surface (RIS) has gained much traction due to its potential to manipulate the propagation environment via nearly-passive reconfigurable elements. Attention has been drawn to the use of RIS 1.0 architectures based on diagonal scattering (phase shift) matrices where each element of the RIS is connected to a load disconnected from the other elements. This enables simple RIS architectures to control the phase of the impinging wave and reflect the wave in the desired direction. This project argues that to truly exploit the benefits of RIS in 6G, RIS 2.0 need to explore architectures beyond conventional diagonal phase shift matrices. Beyond Diagonal (BD) RIS, pioneered by the PI and viewed as a paradigm shift in RIS design, relies on a suitable design of the reconfigurable impedance network and the connection architecture to smartly connect RIS elements to each other and exploit off-diagonal elements of the scattering matrices. BD-RIS has been shown to offer new opportunities over RIS 1.0 by controlling both phases and magnitudes of reflected waves, enabling hybrid transmissive and reflective mode, increasing reflected power, boosting spectral efficiency, enhancing flexibility in various deployments, and enabling highly directional full-space coverage. Motivated by those recent results by the PI and leveraging a unique set of complementary skills with our academic and industry partners HKUST, Interdigital and Viavi, this visionary project, conducted at Imperial College London, will take BD-RIS to the next level, by laying the foundations of BD-RIS aided network design, identifying the full potential benefits of BD-RIS for next generation wireless networks (communications, sensing, power), and assessing the feasibility of BD-RIS. This will be the first project on BD-RIS in the UK and in the world. To put together this revolutionary BD-RIS in a credible fashion, this project focuses on 1) developing physical and electromagnetic compliant models for BD-RIS, 2) conceiving new BD-RIS architecture, control, optimization, and signal processing, 3) inventing new wireless systems paradigms and applications enabled by BD-RIS, 4) demonstrating the feasibility of BD-RIS through prototyping and experimentation. The project demands a strong and inter-disciplinary track record in microwave theory, optimisation, multi-antenna signal processing, wireless communication, machine learning, and it is to be conducted in a unique research group with a right mix of theoretical and practical skills and an established track record in the area. With the above and given the novelty and originality of the topic, the research outcomes will be of considerable value to transform the future of wireless networks and give the industry a fresh and timely insight into the development of BD-RIS for 6G and advancing UK's research profile in 6G. Its success would radically change the design of radio access networks, have a tremendous impact on standardisation, and applications in many sectors involving future communications, power, and sensing networks.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X035352/1
    Funder Contribution: 254,425 GBP

    Over 1.3 million people die each year because of road traffic crashes, according to the estimate of World Health Organisation. Automation could ultimately provide safer roads and less fatalities, but in order for driverless technology to become mainstream, much needs to change; more efficient communication and networking are essential for fully autonomous driving. Connected autonomous vehicles building upon advanced intelligent transportation systems are receiving increasing research attention due to their potentials in delivering tremendously improved safety, unprecedented travel experiences, and significantly enhanced traffic efficiency. Central to this vision is a ubiquitous and highly scalable vehicle-to-everything (V2X) communication network in which every vehicle can "talk and listen" to other vehicles, people, and machines, freely and seamlessly. Such a V2X communication network is pivotal for the enabling of a rich variety of vehicular use cases. For instance, remote driving, coordinated driving & route planning, in-car video conferencing/gaming, high-resolution map downloading. By enabling travel in close cooperative formations with one driver controlling multiple vehicles, called 'platooning', the need for drivers would reduce thereby addressing the truck driver shortages in the UK. The harsh vehicular channels, the varying nature of vehicular networks, and the increasingly stringent quality-of-service requirements that arise under the evolution of the 5G-and-beyond mobile networks, however, call for enhanced signal design and processing algorithms to accommodate a vast range of use cases and communication devices. This project will develop such technology to lay the foundations for the next generation V2X communication systems to deliver safer, faster, greener, and smarter data services. Innovations will be made by analysing and developing more efficient and reliable vehicular transmission signals as well as their corresponding receiver designs to strike a flexible trade-off in terms of transmission efficiency, communication time lags, reception complexity and robustness. Major advances are expected by our application of the most up-to-date algorithms to improve the intrinsic structural properties of the transmission signals and to enable the full exploitation of the channel variations at the receiver. By carrying out a practicality-oriented research method, we will analyse and evaluate the combined effects of various hardware imperfections and practical computing/storage constraints in the industry preferred vehicular channel models. In view of the ever-growing densely connected vehicles, we will also determine effective solutions for massive, reliable, and rapid vehicular communications in high mobility channels. Specifically, by working with AccerlerComm and VIAVI Solution (two 5G communications companies), and Conigital (an autonomous vehicle developer), we aim for systematic design guidelines, feasible signal processing algorithms, and concrete implementation approaches for significant breakthroughs that can influence both academia and industry. Moreover, by collaborating with the University of Bergen in Norway, our project could for instance benefit the wider research community with enhanced mathematical problem solving in areas which complement our work. Overall, the proposed project seeks ground-breaking research outcomes by addressing several fundamental problems in vehicle-centric transmission signal design and receiver processing. These will enable the improvements required for advanced applications to achieve the connected autonomous vehicle aspirations for future transportation systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S02476X/1
    Funder Contribution: 233,477 GBP

    Future wireless communication networks are expected to address unprecedented challenges to cope with a high degree of heterogeneity in terms of devices, deployment types, environments, carrier frequency, etc. Moreover, they are expected to provide orders of magnitude improvement to such heterogeneous networks in key technical requirements including throughput, number of connected devices, latency and reliability. With such diverse services and diverging requirements, it is cumbersome to design a unified all-in-one radio system to meet the technical needs for all types of services. In addition, designing separate systems that run on separate infrastructures make the operation and management of the system highly complex, expensive and spirally inefficient. The scope of the project is to establish a radio ecosystem on a common infrastructure that efficiently accommodates communication services for all vertical sections from manufacturing, entertainment, public safety, public transport, healthcare, financial services, automotive and energy utilities. This can be enabled by an algorithmic framework orchestrating all radio slices that are individually customised and optimally designed. Network slicing is an overarching feature towards 5G-and-beyond to support all scenarios efficiently. Core network slicing has attracted much attention through network functions virtualisation. However, from the radio level, an algorithmic framework for spectrum- and cost-efficient air-interface to achieve the true potential of end-to-end network slicing for the future diverse radio systems is still an open problem yet to be solved. To guarantee the required performance for each individual user case efficiently, the physical layer (PHY) configurations should be delicately optimised and medium access control layer (MAC) radio resource should be allocated on-demand. For instance, subcarrier spacing is one of the paramount importance parameters for modern multicarrier communication systems (e.g., LTE, WiFi, etc.), the service for future massive machine type communications (mMTC) might require smaller subcarrier spacing (thus larger symbol duration) to support massive delay-tolerant devices. While vehicle to vehicle (V2V) communications, on the other hand, have more stringent latency requirements, thus, symbol duration should be significantly reduced compared to mMTC. However, cohabitation of the individually optimised services in one system may bring several technical challenges from both PHY and MAC. It will destroy the system orthogonality and PHY algorithm framework that the state-of-the-art telecommunication systems built on. From the resource allocation perspective, one of the challenges is that not only the multi-slice system forests a complex multiple layers resource structure, but also technical requirement of each slice can be significantly different. Thus, a cross-layer and cross-slice optimisation is envisioned to maximise the overall air-inference performance. The aim of REORDER is to address the abovementioned challenges, by establishing the framework of air-interface heterogeneous signal orchestration and efficient resource allocation. The proposed work fills in the last piece of the puzzle for realistic and efficient end-to-end network slicing. From this sense, REORDER will "reorder" the radio resource allocation caused by slice configuration disorders. The project will be undertaken in the Communication, Sensing and Imaging research group (CSI) in the University of Glasgow, by the PI, a PDRA and a PhD student based at the University of Glasgow. Our industrial partners include NEC Telecom MODUS (UK), Mathworks Research Centre Glasgow, and VIAVI Solutions (UK). The radical approaches proposed in this project will be verified though both state-of-the-art standard compatible system-level simulation and software defined radio (SDR) based over-the-air experimentations.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W026813/1
    Funder Contribution: 1,352,410 GBP

    The forecast by International Telecommunication Union (ITU) predicts that by 2030, the overall mobile data traffic will reach 5 zettabytes (ZB) per month. Multiple-input multiple-output (MIMO) is the most celebrated mobile technology that provides the needed upgrade from 2G to 3G, from 3G to 4G and most recently from 4G to 5G in the form of massive MIMO. In 5G, the number of antennas at the base station (BS) has been increased to 64 to cope with the rising demands. However, the number of antennas at a mobile handset (referred to as user equipment (UE) in the standards) remains small (<=4). This is due to the limited space at the UE, as the common practice is to deploy multiple antennas only if they are sufficiently apart (>=half of the wavelength) to have sufficient diversity of signals at different antennas for ensuring performance gains. It makes us wonder if it is possible to utilise the spatial diversity in a small space of UE more effectively. What if an antenna can be formless, shapeless like water? This is what this project is all about - to design novel antenna systems, coined fluid antennas, that can provide the ultimate reconfigurability and agility for signal and information processing. It is worth pointing out that seawater, albeit much less conductive than metal, has already been demonstrated a radiation efficiency of 70% by Mitsubishi Electric, and fluid antennas using conductive fluids or liquid metals for different reconfigurabilities have been actively researched in recent years. Despite the interest for fluid antennas in the antenna community, it was not until the original work by the investigators when the characteristics of fluid antenna was exploited for the optimisation of wireless communications systems. In the pioneering work, it was revealed that an agile fluid antenna system could, for the first time, realise: (*) Fading-free communications: one fluid antenna could achieve the same diversity as a massive number of fixed antennas. (*) Interference-free communications: spatial multiplexing for multiuser communications can be obtained by skimming through the fading envelopes observed in the space of the fluid antenna, by tuning to the most favourable position (or port) where the interference is in a deep fade, without the need for complex coordination and signal processing. Motivated by the great potential, this project identifies several fundamental challenges of fluid antenna systems, including, design and implementation, signal processing and optimisation, and fundamental network performance analysis, and aims to overcome these challenges in the realisation of the fluid antenna empowered mobile communications technologies by researching on four fronts: (1) Design and implementation of a pump-less, droplet fluid antenna - this addresses the implementation challenges of the fluid antenna system. (2) Information-theoretic network performance analysis in general channel models, representing the 5G/6G bands - this addresses the performance analysis of the communication networks using fluid antennas in the 5G and potential 6G bands. (3) Port selection and opportunistic fluid antenna multiple access (FAMA) - this tackles the network management and resource allocation of mobile communication networks using fluid antennas. (4) Fluid MIMO - this investigates the design and optimisation of MIMO using fluid antennas and multi-droplet fluid MIMO systems. The research directions have never been explored and will play a key role in revolutionising mobile communications. This project has received strong support from BT, Toshiba TRL and VIAVI Solutions who will advise on testbed implementations and ensure industrial relevance of the project.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V008420/1
    Funder Contribution: 425,970 GBP

    The term microwave is used in reference to electromagnetic radiation with wavelengths ranging from about one meter to one millimetre. In the electromagnetic spectrum microwave wavelengths are shorter than those of radio waves but longer than those of infrared waves. Microwaves are used extensively in modern communication systems, including: mobile networks, WiFi, GPS, satellite TV, etc.. Other applications, include: heating, radar, imaging, etc.. The number of applications for microwaves is increasing due to the increasing use of electronic devices and the convenience of communication without wires. In the future microwaves will be used in 5G mobile networks, which will see the introduction of a multitude of new devices, all relying on communication via wireless signals. Those new devices and applications include: driverless cars, remote surgery, virtual reality, internet of things, etc.. Today most of the components within a system, operating at microwave frequencies, are designed specifically for that particular application. This increases the cost, and time required to bring a new product to market. In turn, this impacts the price which consumers pay for goods and services e.g. mobile handsets. In this research we ask the question; what if a communication system could be assembled from a collection of standardised bricks in just the same way that anything can be constructed from standard Lego(TM) bricks? Then the design task would reduce to that of devising and designing a suitable set of bricks with which to create a range of different systems. To some extent this already happens; for example, companies produce a range of frequency selective filters having different specifications, and one can select a filter for a particular application. However, the enormous variety of different systems means that a large number of different variations are required. So a huge amount of design effort is still required. In this research we consider what would happen if, we could devise a generic Lego(TM) brick that would assume different sizes and forms. This would enable us to construct any system from a collection of this single almost magical Lego(TM) brick. If this could be achieved the task of designing a complex microwave system, such as the radio within a mobile handset, would merely involve deciding how to assemble a collection of these "magic" Lego(TM) bricks to create the required system. The idea, although attractive, sounds like a fantasy because from our everyday experience we "know" that no object cannot mutate to assume any form and then hold that form, at will. Surely, such a concept is pure science fiction and the stuff of movies like the terminator... Well, no in fact it is not, since 2014 researcher have been working intensively on a new and exciting material which behaves in a way very much like the metal seen in the terminator movies. This material is a metal and yet it is also a liquid at room temperature. Excitingly it can be caused to move under direct electrical control and to hold its shape, at will. In this research we plan to use that material to a create this "magic" Lego(TM) brick which behaves as a universal microwave component. Being made from liquid the component can be flowed into different sizes and forms and thus we obtain 'liquid wires'. To create larger systems, we will simply need to decide how to join the bricks together so that they can operate in unison to perform more complex functions. Our research is highly interdisciplinary in nature and will benefit the U.K. economy across a wide range of different areas, including: chemistry, materials science, and engineering. The technology could revolutionise the way that communications systems are designed and built, resulting in entire new industries.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.