Powered by OpenAIRE graph
Found an issue? Give us feedback

Johnson Matthey Fuel Cells

Johnson Matthey Fuel Cells

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/L016443/1
    Funder Contribution: 4,544,390 GBP

    The report 'Higher Degree of Concern' by the Royal Society of Chemistry highlighted the importance of effective PhD training in providing the essential skills base for UK chemistry. This is particularly true for the many industries that are reliant on catalytic skills, where entry-point recruitment is already at PhD level. However, the new-starters are usually specialists in narrow aspects of catalysis, while industry is increasingly seeking qualified postgraduates equipped with more comprehensive knowledge and understanding across the cutting edge of the whole field. The 2011 EPSRC landscape documents acknowledged the existing strengths of UK catalysis (including the concentration of academic expertise in the south-west), but recognised the critical need for growth in this strategic and high-impact field of technology. Over the following 18 months, the universities of Bath, Bristol and Cardiff worked closely together to put in place the foundations of an alliance in catalysis, based on the distinctive but complementary areas of expertise within the three institutions. This bid will build on this alliance by creating a single training centre with unified learning through teaching and research. Building on the best practice of existing and established postgraduate training, and benefitting from the close geographical proximity of the three universities, each intake of PhD students will form part of a single cohort. The first year of the PhD will involve taught material (building on and expanding Cardiff's established MSc in catalysis), a student-led catalyst design project, and research placements in research laboratories across all aspects of catalysis science and engineering (and across all three institutions). This broad foundation will ensure students have a thorough grounding in catalysis in the widest sense, fulfilling the industry need for recruits who can be nimble and move across traditional discipline boundaries to meet business needs. It will also mean the students are well-informed and fully engaged in the design of a longer PhD project for the next three years. This project will be the same as the more traditional PhD in terms of its scholarship and rigour, but still include wider training aspects. A further benefit of the broader initial training is that students will be able to complete PhD projects which transcend the traditional homogeneous, heterogeneous, engineering boundaries, and include emerging areas such as photo-, electro- and bio-catalysis. This will lead to transformative research and will be encouraged by project co-supervision that cuts across the institutions and disciplines. We have identified a core of 28 supervisors across the three universities, all with established track records of excellence which, when combined, encompasses every facet of catalysis research. Furthermore, full engagement with industry has been agreed at every stage; in management, training, project design, placements and sponsorship. This will ensure technology transfer to industry when appropriate, as well as early-stage networking for students with their potential employers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037116/1
    Funder Contribution: 5,542,950 GBP

    The broad theme areas are Hydrogen and Fuel Cells, and the training will be interdisciplinary based on the skills and experience of the partners which range from Chemical Engineering (Prof Kendall), Chemistry (Prof Schroeder and Dr Anderson), Materials Science (Dr Book), Economics (Prof Green), Bioscience (Prof Macaskie), Applications (Dr Walker), Automotive and Aeronautics (Prof Thring) and Policy/Regulation (Prof Weyman-Jones). Training will also include industry supervision with the 23 companies which have signed up and overseas training with FZJ in Germany and University of Central Florida in the USA.There is an increasing demand for skilled staff in the field of Hydrogen and Fuel Cells, which at present has no dedicated UK centre for training, disseminating and co-ordinating with government bodies, industry and the public. This contrasts with the establishment of Forschungszentrum Julich (FZJ) in Germany, ECN in the Netherlands, and Risoe Laboratory in Denmark. Large companies such as Johnson Matthey, Rolls Royce and Air Products have substantial hydrogen and fuel cell projects, with hundreds of employed PhD level scientists and engineers. Recruitment has been a problem in recent years since only a handful of British universities carry out research in this area. But, most significantly, a large amount of private sector investment has now been injected, especially on the Alternative Investment Market (AIM) in London, such that support to SMEs such as Ceres Power, Intelligent Energy, Ceramic Fuel Cells Ltd, ITM, CMR and Voller has risen to several hundred million pounds, requiring hundreds of PhD recruits. Also, since the Joint Technology Initiative (JTI) has now been established in Europe, this 1bn Euro project will add to the very large research funding by organisations such as Siemens, GM, Renault, Ford, FZJ, EADS, CEA, Risoe, ECN etc. Several large centres for research and training exist in Europe, the USA and Japan and it is imperative that Britain increases its student output to keep pace.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.