Powered by OpenAIRE graph
Found an issue? Give us feedback

Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie

Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie

11 Projects, page 1 of 3
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.2023.039

    In The Netherlands “the land of water” the ecological quality of ponds, ditches, wetlands and lakes is severely degraded due to escalating and interacting anthropogenic pressures including pollutants and climate change. SEFAP unites leading Dutch freshwater experimentalists, infrastructures and data scientists to provide a step forward in collaborative science and inland water ecology. By conducting experiments in SMART-enabled replicated mini-lake ecosystems, SEFAP will enable the future of our waters to be experimentally created and tested. In combination, the technical innovation and community-building of Dutch aquatic experimentalists will strengthen the ability to predict and mitigate undesirable futures in aquatic ecosystems.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1331.19.201

    Met dit project versterken we de wetenschappelijke basis voor het Deltaplan Biodiversiteitsherstel, een brede maatschappelijke coalitie die streeft naar levende, biodiverse, werkende Nederlandse landschappen. Dit doen we door integrale biodiversiteitmonitoring op te zetten en te testen, maatlatten (KPI’s) te creëren waarmee grondgebruikers biodiversiteit-vriendelijker kunnen opereren, verkennen hoe deze KPI’s onderdeel van verdienmodellen kunnen worden, handvatten voor co-creatie en samenwerking aan te reiken en te testen, en door vanaf het begin met de relevante nationale en regionale stakeholders te bepalen welke kennis het verschil gaat maken. De wetenschappelijke uitdaging zit hem ook in het aansluiten en integreren van de ecologische en socio-economische kennisdomeinen. Naast wetenschappelijke outputs op elk van deze terreinen, wordt steeds met de samenwerkingspartners (o.a. in de Deltaplan werkgroepen) besproken hoe de resultaten tot outcomes en uiteindelijk impact kunnen leiden. Dit bepaalt de vorm waarin en de manier waarop kennisuitwisseling en uitrol plaatsvindt. Dit project (fase 2) sluit nauw aan op de drie fase 1 Living Labs, betreft dezelfde onderzoekers, maar gaat uitdrukkelijk over wat we kunnen leren van de individuele living labs en hoe we die bevindingen kunnen opschalen naar heel Nederland. Derhalve is het voorstel gebaseerd op een gemeenschappelijk kader, waarin de wetenschappelijke discussie over en ervaring met verschillende methoden en aanpakken centraal staat. Activiteiten in het overkoepelende project zijn doorsnijdend over de 3 living labs en sluiten aan bij het Deltaplan en andere initiatieven. Onderzoekers en samenwerkingspartners komen in co-creatie tot fundamenteel wetenschappelijke inzichten die relevant zijn voor de praktijk en waarbij tevens een grote kans is op gebruik van de inzichten door agrariërs, bedrijven, overheden die biodiversiteit willen versterken en stimuleren.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 680-47-616

    Transcription of genes is fundamental to life and is strictly regulated. The key molecules involved are DNA, condensed in chromatin, and transcription factors that bind to DNA. A mechanistic understanding of transcription regulation however is lacking. This limited mechanistic insight is illustrated for example by the many malignant side effects of drugs that target the glucocorticoid receptor, a transcription factor that regulates several hundreds of genes. Using single molecule analysis I will uncover the physics of gene activation and repression. The challenge is to connect nanometer conformational changes in chromatin to the activity of transcription factors. Novel single molecule techniques are uniquely fit for this because they measure nanometer distances in individual molecules without averaging out variations between molecules or in time. All single molecule studies to date have used model chromatin though, which lacks the structural and temporal variations that are the essence of gene regulation. I will break new ground by simultaneous multi-color fluorescence and force measurements on a single gene, including the chromatin that regulates its accessibility. With the latest biochemical techniques I will reconstitute and isolate functional chromatin and transcription factors. This combination of techniques and materials will quantify changes in chromatin upon binding of transcription factors with unprecedented detail. I will bridge the gap between these well-controlled test-tube conditions and the complex nuclear environment of genes in a living cell by using a novel tracking technology that was recently developed in my lab. By tracking individual gold nanorods I will for the first time measure the extension of a single gene in a live cell, exposing the structural changes in chromatin that accompany transcription. This comprehensive physical approach will provide a better understanding of gene regulation and may ultimately lead to more precise interventions in this process.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 645.002.002

    Within the NWO Complexity project a model, PCLakeS+, has been developed that allows for modellng ecological aspects of networks of lakes. The resulting model has been applied to a network of 14 lakes in the province of Friesland. The results of this case study show that the model has added value for the ecological modelling of networks op lakes.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 482.22.111

    Water hyacinth, an invasive species in (sub-)tropical inland waterbodies, clogs waterways and intakes and affects aquatic life and human activities, and may facilitate the spread of diseases. On the other hand, water hyacinth can be exploited for biofuel production and other sources of income. A sustainable solution to water hyacinth infestation “uses” WHY instead of only attempting to “lose” them. This project will use scientific research, satellite data, and stakeholder experiences to co-create such solutions for Lake Chivero, the main source of drinking water to Harare, capital of Zimbabwe.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.