Powered by OpenAIRE graph
Found an issue? Give us feedback

EireComposites Teo

EireComposites Teo

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S023801/1
    Funder Contribution: 6,732,970 GBP

    This proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L02697X/1
    Funder Contribution: 82,792 GBP

    Laminated composites from dry carbon fibre preforms are increasingly being used to produce primary structures in several industries. However, the poor performance in the out-of-plane (through the thickness) direction, and delamination has been a cause of concern, requiring the careful analysis of load paths to limit out-of plane stress. Furthermore, this has a limiting effect on the design freedom for composite components and could challenge the use of composites for future aerodynamic or structural concepts. Several 'first-generation' methods have been proposed to improve out-of-plane performance including z-pinning, selective interlayers and hybrids, protective layers or resin toughening; one method that is becoming increasingly successful is to reinforce composites with a fibre that connects the layers together running from the upper to lower surface of the laminate. This method shows potential but has been limited by the lack of suitable materials available for through-thickness reinforcement where we have hitherto been limited to carbon fibre, glass, basalt, Aramid or other polymeric fibres. Also, there is a limited understanding of the mechanisms involved in out-of-plane rate-dependent response of composite materials. This proposal aims to develop a new understanding of through-thickness reinforcement and to research a method to produce composites with a through-thickness response which is designer defined. This will be done by placing a 'second-generation' manufactured yarn with optimised properties in the through-thickness direction, thereby enabling the design of optimum Ez (laminate through-thickness Young's modulus) for a given loading scenario. The new yarn will be made by compounding extrusion of a thermoplastic monofilament reinforced with carbon fibres of specified length, optimising material and process parameters, and using these yarns as through-thickness reinforcement in carbon fibre/epoxy laminates. The performance will be characterised and a predictive analytical elastic stiffness model will be developed. Also, the visco-elastic properties of the new through thickness yarn will be related to the transverse impact performance of the laminated composite. These subjects have not been previously researched and if successful, the results could be transformative and generate global impact for UK composites research and industry. In the future the research will benefit aerospace companies; with the proposed enhanced out-of-plane performance they could potentially design a pressurised blended wing, composite lug arrangement, stringer to skin interface and run-out, buckling critical locations, high impact locations, etc.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P029922/1
    Funder Contribution: 1,399,780 GBP

    It is proposed to establish an innovative Structural Composites Research Facility (SCRF) for faster fatigue or cyclic load testing of large structures. This will initially be focussed on fibre-reinforced composite material structures, such as stiff tidal turbine blades (e.g. fabricated from carbon fibre and glass fibre reinforced polymer resins). The facility will be the first of its kind in the world, and will use a brand new, ultra-efficient digital displacement regenerative pumping hydraulic system. For fatigue testing of tidal turbine blades, the novel hydraulic actuation system will only use 10-15% of the energy input required by conventional hydraulic testing systems, and will test structures 10 times faster than possible with existing hydraulic systems (test frequency increase from 0.1 Hz to 1 Hz). This will enable more and faster impact-led academic research into fundamental engineering options for new materials technology and accelerated evaluation of tidal turbine blades leading to more rapid certification and deployment to market. Such a capability is critical to the success of this emerging composite materials technology for renewable energy and will accelerate the conversion of available tidal marine energy, which is currently under-exploited at a time of increasing national demand for energy. Nationally, the facility will also underpin fundamental research in composite materials across all sectors, to be targeted at applications in high value manufacturing sectors such as aerospace, automotive, and civil engineering applications (e.g., structural health monitoring in bridges and buildings subject to ongoing fatigue under cyclic loading). Academics will benefit by access to a state-of-the art accelerated fatigue testing facility, opening new research opportunities on fundamental materials and process topics. Industry will benefit by reduced design risk from better testing data and by reduction of product testing time, within the product development cycle times needed in the renewable energy, aerospace, naval defence, marine and infrastructure sectors.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.