
Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen
Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen
88 Projects, page 1 of 18
assignment_turned_in Project2016 - 2021Partners:Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Department of Materials, Mechanics, Management & Design (3MD), Technische Universiteit Delft, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Materials, Mechanics, Management and Design (3MD), Applied Mechanics, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Geo-engineering +1 partnersTechnische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Department of Materials, Mechanics, Management & Design (3MD),Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Materials, Mechanics, Management and Design (3MD), Applied Mechanics,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Geo-engineering,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & EngineeringFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 14698Energy efficiency of buildings is desirable to reduce costs, greenhouse gas emissions and meet legislative targets. This project aims to tackle a number of outstanding questions for the widespread use of energy piles, an existing technology that has the potential to reduce energy consumption in the heating and cooling of buildings. Energy piles provide both foundation (structural) support to the building and the heating/cooling required. The study aims to address the thermo-hydro-mechanical interaction between the pile and the ground under realistic and extreme conditions, addressing both the short- and long-term behaviours. The system behaviour will be characterised via laboratory tests, a field test and a numerical simulation tool. This simulation tool will be developed so that it can be used in engineering practice. A potential mechanical failure (i.e. a structural collapse) when too much heating and cooling is extracted from the ground has been identified and will be thoroughly investigated. This project is sponsored by STW with a strong support from industry.
more_vert assignment_turned_in ProjectFrom 2023Partners:Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Toegepaste Geologie, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Geo-engineering, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Department of Materials, Mechanics, Management & Design (3MD), Technische Universiteit Delft, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen +2 partnersTechnische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Toegepaste Geologie,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Engineering, Geo-engineering,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Department of Materials, Mechanics, Management & Design (3MD),Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & EngineeringFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 19986The Netherlands, as most countries, has an inventory of radioactive waste which requires long-term disposal. Disposal in deep Paleogene clay formations is a possible solution, and therefore such formations need careful characterisation, including of their long-term behaviour and behaviour under changing chemical conditions. A unique opportunity to access representative cores taken at an appropriate depth (~400m) allows us in this project to investigate the key mechanical behaviour in detail in the laboratory. The results will lead to better assessment of safety and economic feasibility of a geological disposal facility for the Netherlands.
more_vert assignment_turned_in Project2024 - 9999Partners:Universiteit Twente, Faculty of Engineering Technology (ET), Department of Civil Engineering & Management (CEM), Water Engineering and Management (WEM), Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Hydraulic Engineering, Coastal Engineering, Universiteit Twente, Universiteit Twente, Faculty of Engineering Technology (ET), Department of Civil Engineering & Management (CEM), Water Engineering and Management (WEM), Marine and Fluvial Systems, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen +3 partnersUniversiteit Twente, Faculty of Engineering Technology (ET), Department of Civil Engineering & Management (CEM), Water Engineering and Management (WEM),Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Hydraulic Engineering, Coastal Engineering,Universiteit Twente,Universiteit Twente, Faculty of Engineering Technology (ET), Department of Civil Engineering & Management (CEM), Water Engineering and Management (WEM), Marine and Fluvial Systems,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Hydraulic Engineering, Environmental Fluid Mechanics (EFM),Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Remote Sensing (GRS)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 20014Coastal beach-dune systems worldwide are under increasing pressure from sea level rise and increasing urbanization. A lack of knowledge on the (long-term) impact of anthropogenic events on coastal dune development impacts our possibilities to manage these coastal systems.. The AdaptCoast project aims to develop new adaptive monitoring, analysis and modelling tools to obtain new knowledge and tools to assess the long term human induced impacts on beach dune systems.
more_vert assignment_turned_in Project2018 - 2023Partners:Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Watermanagement, Waterhuishouding, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Watermanagement, University of Zimbabwe, Faculty of Engineering, University of Zambia, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen +4 partnersTechnische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Watermanagement, Waterhuishouding,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Watermanagement,University of Zimbabwe, Faculty of Engineering,University of Zambia,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,University of Zambia,Technische Universiteit Delft,Technische Universiteit Delft,University of ZimbabweFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: W 07.303.102In the Lower Zambezi (Zambia, Zimbabwe and Mozambique), populations suffer frequently from severe floods and droughts. Dealing with these problems relies on the ability to accurately estimate the flows entering the river. This is a major challenge because most of the rivers entering the Zambezi are ungauged (meaning there are no flow records). The overall goal of this project is to enhance the water, food and energy security in the Lower Zambezi through better understanding of the rainfall-runoff behaviour of these rivers. This is crucial for more reliable flow predictions, better operation of Kariba and Cahora Bassa dams, reducing flood hazard of affected communities and securing energy and agricultural production. For that purpose, this research will develop a landscape and ecology-based hydrological model fed by remotely sensed rainfall and evaporation. Use will be made of the latest innovations in water resources assessment, such as: drones for topography-based river rating; DTS (Distributed Temperature Sensing) for determining evaporation from indigenous forests; accelerometers for interception measurement; and micro-wave links to determine the water content of vegetation. Improved dam operation will contribute to achieving the sustainable development goals on water, energy, environment, flood and human settlement. The research will be carried out jointly by UZ, WaterNet and TUD and in close cooperation with end users ZINWA (Zimbabwe National Water Authority), WARMA (Zambian Water Resources Management Authority) and HCB (Hydro Cahora Bassa). As water is crucial for virtually every human and biotic activity, this project positively contributes to these SDGs and generates knowledge and tools to prevent negative feedbacks.
more_vert assignment_turned_in Project2017 - 2022Partners:East China Normal University, Deltares, University of London, University of Reading, Met Office Hadley Centre +12 partnersEast China Normal University,Deltares,University of London,University of Reading,Met Office Hadley Centre,Shanghai Climate Centre,Deltares,Shanghai Normal University,East China Normal University,University of Reading, Department of Meteorology, Centre for Global Atmospheric Modelling,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,Met Office Hadley Centre,Shanghai Climate Centre, Shanghai Meteorological Service (SMS),Technische Universiteit Delft,University of London, School of Oriental and African Studies (SOAS), School of Finance and Management,Shanghai Normal University,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Hydraulic Engineering, Hydraulic Structures and Flood RiskFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: ALWSD.2016.007An integrated flood risk modelling framework was developed to determine how climate change and sea level rise will influence typhoon flood risk in Shanghai, and resulting damages to residents, businesses, and industries, as well as to investigate the effect of proposed infrastructure and adaptation measures on the reduction of this flood risk. The team found that flood risk increases in general due to sea level rise, while the geographic location of heaviest flood risk moves northward as typhoon tracks shift. This leads to a shift in risk distribution between domestic vs. foreign-owned businesses due to their geographic settings.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right