Powered by OpenAIRE graph
Found an issue? Give us feedback

Toyota Motor Europe NV SA

Toyota Motor Europe NV SA

15 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/F027486/1
    Funder Contribution: 92,301 GBP

    This project is a feasibility study aimed at establishing the viability of a new class of material for hydrogen storage namely pillared nanographites. One of the more challenging problems in energy research is to find a compact, safe and lightweight alternative to petroleum that has similar energy densities. There are a large number of different potential solutions to this problem, but the use of hydrogen has interesting possibilities in that it promises a clean, efficient and quiet form of energy storage. We believe that we have identified a new class of materials, pillared nanographites, that will be able to satisfy this need and are also cheap and environmentally friendly (recyclable). The hydrogen absorption properties of these materials are highly tuneable via control of the interlayer spacing, the concentration and type of intercalant, the surface charge, and nano-scale texture. Furthermore, our compounds are cheap, recyclable and environmentally friendly (they do not contain toxic heavy metals). We would therefore like to request funds for an exploratory study that will establish the feasibility or otherwise of these materials. Although it is quite speculative in nature, this project has strong support from Toyota Motors.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F027923/1
    Funder Contribution: 204,743 GBP

    This project is a feasibility study aimed at establishing the viability of a new class of material for hydrogen storage namely pillared nanographites. One of the more challenging problems in energy research is to find a compact, safe and lightweight alternative to petroleum that has similar energy densities. There are a large number of different potential solutions to this problem, but the use of hydrogen has interesting possibilities in that it promises a clean, efficient and quiet form of energy storage. We believe that we have identified a new class of materials, pillared nanographites, that will be able to satisfy this need and are also cheap and environmentally friendly (recyclable). The hydrogen absorption properties of these materials are highly tuneable via control of the interlayer spacing, the concentration and type of intercalant, the surface charge, and nano-scale texture. Furthermore, our compounds are cheap, recyclable and environmentally friendly (they do not contain toxic heavy metals). We would therefore like to request funds for an exploratory study that will establish the feasibility or otherwise of these materials. Although it is quite speculative in nature, this project has strong support from Toyota Motors.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W036517/1
    Funder Contribution: 1,656,450 GBP

    Batteries and electrocatalytic devices (i.e electrolysers, fuel cells) have multiple components spanning different length scales. The materials design space in these research fields is too large to be explored empirically. While experimental work can be directed by computational modelling to make this challenge more tenable, this is time consuming, and the number of tests/syntheses is still be too large on the experimental scale. DIGIBAT will combine computational tools (e.g. atomistic and molecular modelling, process modelling, computer-aided design, machine learning algorithms, data science) and automated HT synthesis, characterisation and testing from atoms to devices to accelerate the discovery and optimisation of new batteries and electrofuels. Specifically, DIGIBAT will comprise three HT stations: Platform A dedicated to materials synthesis and characterisation, Platform B dedicated to HT electrodes manufacturing all the way to device manufacturing and Platform C dedicated to HT electrochemical testing for both batteries and electrocatalysts. DIGIBAT will be paired with materials characterisation also applied in HT, including in operando characterisation. By executing data-rich experiments, DIGIBAT will increase the pace of innovation, while enhancing reproducibility by eliminating human errors. The research enabled by ATLAS will target challenges related to: (1) the discovery and optimisation of new battery chemistries, (2) synthesising, optimising, and testing recycled battery materials; (3) Discovering precious metal free electrocatalysts for green H2 production and fuel cells; (4) Efficient N2 to ammonia and CO2 reduction to fuels and chemicals for electrocatalysts discovery

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E002323/1
    Funder Contribution: 17,848,800 GBP

    The Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y005139/1
    Funder Contribution: 829,005 GBP

    Navigation solutions can be made independent of satellite communication if, for example, real-time measurements of the earth's gravitational profile can be matched to known values on a map. For this, an absolute gravimeter is needed that can be transported and operated in real-world environments. TOP-GUNS aims to accelerate quantum navigation sensors into real-world positioning, navigation and timing (PNT) applications. TOP-GUNS is motivated by pressing issues that presently impede the operation of quantum navigation sensors exposed to real-world environments and will enhance the robustness and size, weight, power consumption and production cost (SWaP-C) of quantum navigation sensors used in precision positioning and navigation service; especially while the satnav service is unavailable or interrupted. TOP-GUNS will demonstrate and deliver solutions to these issues through a series of technology innovations and initial trials, including simulation platforms. The TOP-GUNS project will exploit major successes of the UK National Quantum Technology Hub in Sensors and Timing and focus on current critical research challenges. In overcoming these, the results of this project will allow the deployment of quantum navigation sensors on moving platforms, ranging from land and aviation vehicles to vessels, ships and subterranean applications. We propose the development of a gravimeter that employs a hollow-core-guide beam and therefore is more robust against transport vehicle lateral movement, which can result in a loss of contrast. To improve the portability of the gravimeter we employ innovative methods to create high-fidelity magnetic field shielding and coils - this is based on advanced optimisation methods to deliver state-of-the-art magnetic field shaping and switching systems that integrate complex coil geometries with conductor networks formed in multilayer PCBs. The creation of a 3D-printed UHV chamber that is topologically optimised to minimise eddy currents induced by magnetic field control sequences enables a substantial reduction in size and weight. These methods will enable an ultra-compact system that is robust against environmental noise and in addition lends itself to mass manufacturing. TOP-GUNS will bring innovative research to the UK quantum navigation community and provide the edge required for the UK to maintain its leading role in quantum and alternative PNT. Furthermore, TOP-GUNS' multifaceted industrial partnerships, including end users and supply chain developers, will greatly benefit the dissemination of research results and the establishment of the quantum and alternative navigation industrial ecosystem, extending from components to systems. Our results are therefore essential for the development and exploitation of gravitational profile maps.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.