Powered by OpenAIRE graph
Found an issue? Give us feedback

Fleet Innovations Ltd

FLEET INNOVATIONS LTD
Country: United Kingdom

Fleet Innovations Ltd

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
5 Projects, page 1 of 1
  • Funder: European Commission Project Code: 712610
    Overall Budget: 71,429 EURFunder Contribution: 50,000 EUR

    The main objective of this innovation project is to refine, scale up and bring to market readiness a user-centric ICT decision support system (CleanPEA) that makes use of an innovate four-tier business model involving corporate fleet owners, vehicle drivers, EV manufacturers and infrastructure providers. CleanPEA will purpose it to support and encourage corporate fleet owners/operators to make the change from diesel-/petrol-powered, Light Commercial Vehicles (LCV – cars and vans) to the Electric Vehicles (EVs) equivalent. This will help the EU meet its demanding CO2 emission reduction targets, as cars and vans contribute around 15% of all CO2 emissions across Europe . Fleet Innovations Ltd. (FLEET) is an ambitious, Innovative-Driven Enterprise (IDE) with a strong desire to internationalise their business and led by a team of experts and serial entrepreneurs in providing data capture/reporting technology systems and fleet management solutions to track corporate business mileage/journey data. While engaging in customer building activities for our current solution (PEAK Miles), we discovered a strong desire among commercial corporations with company LCV fleets to switch to EVs as a way of cutting their cost and meeting their carbon reduction obligations . Europe’s corporate fleets produce around 380Mt CO2 emission annually, accounting for around 8% of all EU emissions . We have conservatively estimated that the successful commercialisation of CleanPEA will allow us to generate new cumulative revenues and profits respectively of €94.32m and €57.55m (EBITDA) 6 years post project (2022). As a result, we would create 91 new jobs across Europe and directly contribute to the reduction of CO2 emissions by 609,780 tonnes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R032750/1
    Funder Contribution: 738,112 GBP

    Increasingly, the places we inhabit and move through - our homes, stations, cafes, offices and the like - will have embedded Internet-of-Things (IoT) devices. These will enable us to be provided with content, communicate, have our environments sensed and adjusted, and so on. While this is a compelling (and very useful) future vision, the energy demands it brings are enormous. Furthermore, we risk cluttering up our physical environments with a plethora of digital devices. In the 'developed' world these are problems that will affect sustainability and the quality of our built environments. In the 'developing' world, though, energy resource constraints and physical resource issues means that without innovation, billions of people will have reduced opportunities to benefit from the coming IoT revolution. This project is about trying to capture the benefits of the IoT future while making it sustainable, delightful and universally accessible. The work involves a team of material scientists and human computer interaction researchers, working together with partners to develop a new form of physical material that can generate the power it needs to drive digital interfaces and interactions. That is, we will drive towards attractive, flat and flexible solar energy harvesting tiles (Photovoltaic - PV - tiles), which may incorporate input and output features to enable people to interact with them and other connected devices. These tiles will be able to be integrated into buildings (in walls and floors, for instance) and objects (like tables, clothes and book covers). The surfaces capture the energy from indoor and ambient light and at the same surface can present digital displays and interfaces to the user. To illustrate the possibilities, consider the following four user-centred scenarios: 1. Tom is busy in the kitchen. A set of Interactive-PV tiles, built decoratively into the wall along the kitchen surface, activates to show a silhouette of a figure approaching the front door. Tom is waiting for a delivery, so gestures at the tiles - the delivery driver at the entrance is shown a message on the door number PV tile, asking her to leave the parcel in the porch. 2. Shashank is walking through the narrow streets of a slum in Mumbai during the monsoon rains. He approaches an awning protecting the street from torrential rain and gestures at a flexible Interactive-PV tile woven into it. The tile displays a no-entry warning sign, and he decides to change direction to avoid walking into a deep flood in the passageway ahead. 3. Sarah has created some interactive art designs for her bedroom wall. She sends them to the Interactive-PV display tiles she has had installed, and later enjoys them, especially as they show her the external weather forecast in a personalised way. She's happy that while they work like LED displays, they can operate for years without needing external power, battery changes or space-consuming standard PV cells. 4. Sofia has flexible designer Interactive-PV tiles on her dress that she uses to control a music player or smartphone with hand gestures, and to receive alerts via electro-tactile feedback. She's impressed that the interface works in a range of environments and light conditions as she moves from her house, through the underground metro system and later to a mellow lit bar. The project ideas and the work itself as it progresses have been co-created with UK and global industry partners and a centre in India that has over 40 years of providing insights into design for resource-constrained communities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R023581/1
    Funder Contribution: 1,831,450 GBP

    Realising a secure, low-carbon energy future depends upon integrating variable generation into the energy system at a large scale, as well as efficiently harvesting renewable energy. Electrochemical and photoelectrical conversion devices are critical to this goal. The fundamental phenomenon that controls how all such devices perform is charge transport, both through and between materials. The Materials Research Hub for Energy Capture, Conversion, and Storage (M-RHECCS) sets out to advance understanding of the structure/function relations that control charge transport in energy materials, forging general principles that govern charge mobility and exchange. By so doing we will lay a foundation for the informed design of next-generation energy materials. Prior efforts at this scale have built teams centred on isolated technologies. Our vision is more integrated, recognizing that electronic, ionic, and mixed conductors form the operational cores of solar cells, fuel cells, batteries, capacitors, and electrolysers. Impressive advances have been made to face some challenges, delivering innovative processes, analytical techniques, and computational models, but poor integration between application areas restricts progress. M-RHECCS brings together world-leading experts across materials disciplines and energy technologies to form a new network, encouraging unorthodox thinking to spark transformative science. The M-RHECCS will connect experimentalists and theorists across disciplines to advance the basic science of charge mobility. Team members will also examine challenges in translating new science into manufacture and application. To ensure impact we propose to focus on 1) breaking the paradigm of 'power or energy' by making porous electrodes and porous or microstructured composites that produce power and energy, 2) structure/function relations that govern charge mobility in mixed ion/electron conductors (MIECs) and ultimately control the performance and stability of MIEC-based electrodes and active media and 3) elucidating transport modes in unconventional ion conducting polymers and ceramics. Porous electrodes and microstructured composites are used in almost all electrochemical devices and in new types of solar cell. We shall investigate how pore size, structure, and order influence power and energy density in electrochemical systems, how microstructure influences current generation and efficiency in solar cells, and how to optimise both. Single-phase MIECs are found in electrodes and active layers of hybrid solar cells, as well as electrodes in fuel cells, electrolysers, and Li-ion batteries. Optical, electrical, and electrochemical measurements, and self-consistent simulation, will combine to elucidate factors that control charge mobility and the critical issue of stability. Ion-conducting polymers and ceramics are core to fuel cells and electrolysers, and solid Li+ conductors could enable all-solid-state batteries, but high conductivity and suitable mechanical properties must be achieved. We aim to learn what material features control ion transport to pave the way for designing innovative conductors. M-RHECCS will also research the translation of advances in porous electrodes, MIECs and ion-exchange materials into scaleable materials and devices. We will assess the value of better charge-transport materials to power generation via detailed analysis of operational data from actual building-integrated solar generation/storage systems . Engagement with our many industrial partners will maximise our work's impact. The M-RHECCS will pull together not only the energy materials researchers across our five partner institutions but also network stakeholders with cognate interests across the UK, in academia, industry, government, and beyond. We will engage with international leaders in charge-transport materials, inviting them to visit the Hub and the UK more widely and take part in M-RHECCS organised networking events.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015099/1
    Funder Contribution: 2,695,470 GBP

    The EPSRC Centre for Doctoral Training in Industrial Functional Coatings: COATED2 will extend and enhance doctoral training provision provided by the current EPSRC CDT COATED. This new CDT will provide 40 EngD research engineers (REs) over 4 cohorts beginning in 2015 to provide critical support to the EPSRC/TSB funded SPECIFIC Innovation and Knowledge Centre (IKC) hosted by Swansea University. The main aim of SPECIFIC is to rapidly develop and up-scale functional coated materials on steel and glass that generate, store and release energy creating buildings as power stations. In the UK more than 4billion m2 of roofs and facades could be used to harvest solar energy. SPECIFIC's vision is to use such surfaces to generate up to one 1/3 of the UK's target renewable energy by the 2020s. This is based on using 20million m2 by 2020, less than 0.5% of the available area. Development of such coatings will lead to an enhancement of value in current manufacturers and the evolution of new industries generating wealth and jobs in the UK. This CDT will furnish these evolving industries with highly skilled graduates whilst providing leaders of industry to existing manufacturers and substrate producers. SPECIFIC supported by COATED REs has made rapid progress and a pilot production line has been established at the IKC opened by Vince Cable MP and Welsh First Minister Carwyn Jones in 2012. The input of current REs into the IKC has led to 2 potential commercial products and 8 patents during the first 2 years of operation. The pilot line provides dedicated up-scaling capabilities to take technologies from lab to production in a matter of days or weeks rather than years. As such, these world-class facilities provide a dynamic environment for the development, up scaling and production of innovative functional coated products and the CDT therefore fulfills the EPSRC priority area of complex manufactured products. Not only this but the technical focus of products researched and up-scaled in the CDT will support other priority themes including solar, energy storage, functional materials and sustainable use of materials and thus provides a rapid route through Technology Readiness Levels (TRLs) 1-6 for a number of critical future technologies. The COATED2 programme will continue to provide research and training in the area of functional coatings that will underpin the research and scale-up activities occurring at SPECIFIC. The brief of the CDT will be enhanced to support the new EPSRC Centre for Innovative Manufacturing (CIM) in Large Area Electronics of which the Welsh Centre for Printing and Coating (WCPC) at Swansea University is a key partner. The WCPC activities are critical to both SPECIFIC and the CIM as the development of large scale printing process are key for the production of the functional coatings technologies developed at SPECIFIC. Thus, REs will directly support activities that will influence both large-scale EPSRC projects. Further enhancement will come in the form of research aligned with Imperial College London (ICL) as a number of collaborative projects are active with ICL linked to Plastic Electronics and their CDT in this field through SPECIFIC and the WCPC. The strategic working partnership between Swansea and partner universities will be strengthened in 2013 by a £6.6million Welsh Government investment in a Solar Energy Futures Lab bringing leading ICL and Oxford University scientists to the IKC to support the science behind innovation for the full period of the COATED2 CDT. This will provide COATED2 REs with access to these scientists and benefit from the synergy of complementary projects supported through each University/CDT with cross fertilisation through the IKC. This activity of RE support for the IKC and CIM with cluster projects involving partner institutions provides a flourishing and vibrant research environment with world class facilities on hand to facilitate research and success.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S021892/1
    Funder Contribution: 5,299,450 GBP

    The Centre's themes align with the 'Towards A Data Driven Future' and 'Enabling Intelligence' priority areas, meeting the needs identified by UKRI to provide a highly skilled - and in demand - workforce focused on ensuring positive, human-centred benefits accrued from innovations in data driven and intelligence-based systems. The Centre has a distinct and methodologically challenging "people-first" perspective: unlike an application-orientated approach (where techniques are applied to neatly or simplistically defined problems, sometimes called "solutionism"), this lens will ensure that intense, multi-faceted and iterative explorations of the needs, capabilities and values of people, and wider societal views, challenge and disrupt computational science. In a world of big data and artificial intelligence, the precious smallness of real individuals with their values and aspirations are easily overlooked. Even though the impact of data-driven approaches and intelligence are only beginning to be felt at a human scale, there are already signs of concern over what these will mean for life, with governments and others worldwide addressing implications for education, jobs, safety and indeed even what is unique in being human. Sociologists, economists and policy makers of course have a role in ensuring positive outcomes for people and society of data-driven and intelligence systems; but, computational scientists have a pivotal duty too. Our viewpoint, then, will always see the human as a first-class citizen in the future physical-digital world, not perceiving themselves as outwitted, devalued or marginalised by the expanding capabilities of machine computation, automation and communication. Swansea and the wider region of Wales is a place and community where new understandings of data science and machine intelligence are being formed within four challenging contexts defined in the Internet Coast City Deal: Life Science and Well-being; Smart Manufacturing; Smart and Sustainable Energy; and Economic Acceleration. Studies commissioned by the City Deal and BEIS evidence the science and innovation strengths in Swansea and region in these areas and indicate how transformational investments in these areas will be for the region and the UK. Our Centre will, then, immerse cohorts in these contexts to challenge them methodologically and scientifically. The use of data-driven and intelligence systems in each of the four contexts gives rise to security, privacy and wider ethical, legal, governance and regulatory issues and our Centre also has a cross-cutting theme to train students to understand, accommodate and shape current and future developments in these regards. Cohort members will work to consider how the Centre's challenge themes direct and drive their thinking about data and intelligence, benefitting from both the multidisciplinary team that have built strong research agendas and connections with each of the contexts and the rich set of stakeholders that are our Centre has assembled. Importantly, a process of pivoting between challenge themes will be applied: insights, methods and challenges from one theme and its research projects will be tested and extended in others with the aim of enriching all. These, along with several other mechanisms (such as intra- and inter-cohort sandpits and side projects) are designed to develop a powerful bonding and shaping "cohort effect". The need for and value of our Centre is evidenced by substantial external industrial investment we have have secured: £1,750,000 of cash and £4,136,050 in-kind (total:£5,886,050). These partners and stakeholders have helped create the vision and detail of the proposal and include: Vint Cerf ("father of the internet" and Vice President of Google); NHS; Pfizer; Tata Steel; Ford; QinetiQ; McAfee; Ordnance Survey; Facebook; IBM; Microsoft; Fujitsu; Worshipful Company of IT Spiritual and Ethical Panel; and, Vicki Hanson (CEO, Association of Computing Machinery).

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.