Powered by OpenAIRE graph
Found an issue? Give us feedback

SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.

Country: Netherlands

SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
57 Projects, page 1 of 12
  • Funder: UK Research and Innovation Project Code: EP/F016050/1
    Funder Contribution: 519,910 GBP

    This proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015749/1
    Funder Contribution: 4,486,480 GBP

    The CDT proposal 'Fuel Cells and their Fuels - Clean Power for the 21st Century' is a focused and structured programme to train >52 students within 9 years in basic principles of the subject and guide them in conducting their PhD theses. This initiative answers the need for developing the human resources well before the demand for trained and experienced engineering and scientific staff begins to strongly increase towards the end of this decade. Market introduction of fuel cell products is expected from 2015 and the requirement for effort in developing robust and cost effective products will grow in parallel with market entry. The consortium consists of the Universities of Birmingham (lead), Nottingham, Loughborough, Imperial College and University College of London. Ulster University is added as a partner in developing teaching modules. The six Centre directors and the 60+ supervisor group have an excellent background of scientific and teaching expertise and are well established in national and international projects and Fuel Cell, Hydrogen and other fuel processing research and development. The Centre programme consists of seven compulsory taught modules worth 70 credit points, covering the four basic introduction modules to Fuel Cell and Hydrogen technologies and one on Safety issues, plus two business-oriented modules which were designed according to suggestions from industry partners. Further - optional - modules worth 50 credits cover the more specialised aspects of Fuel Cell and fuel processing technologies, but also include socio-economic topics and further modules on business skills that are invaluable in preparing students for their careers in industry. The programme covers the following topics out of which the individual students will select their area of specialisation: - electrochemistry, modelling, catalysis; - materials and components for low temperature fuel cells (PEFC, 80 and 120 -130 degC), and for high temperature fuel cells (SOFC) operating at 500 to 800 degC; - design, components, optimisation and control for low and high temperature fuel cell systems; including direct use of hydrocarbons in fuel cells, fuel processing and handling of fuel impurities; integration of hydrogen systems including hybrid fuel-cell-battery and gas turbine systems; optimisation, control design and modelling; integration of renewable energies into energy systems using hydrogen as a stabilising vector; - hydrogen production from fossil fuels and carbon-neutral feedstock, biological processes, and by photochemistry; hydrogen storage, and purification; development of low and high temperature electrolysers; - analysis of degradation phenomena at various scales (nano-scale in functional layers up to systems level), including the development of accelerated testing procedures; - socio-economic and cross-cutting issues: public health, public acceptance, economics, market introduction; system studies on the benefits of FCH technologies to national and international energy supply. The training programme can build on the vast investments made by the participating universities in the past and facilitated by EPSRC, EU, industry and private funds. The laboratory infrastructure is up to date and fully enables the work of the student cohort. Industry funding is used to complement the EPSRC funding and add studentships on top of the envisaged 52 placements. The Centre will emphasise the importance of networking and exchange of information across the scientific and engineering field and thus interacts strongly with the EPSRC-SUPERGEN Hub in Fuel Cells and Hydrogen, thus integrating the other UK universities active in this research area, and also encourage exchanges with other European and international training initiatives. The modules will be accessible to professionals from the interacting industry in order to foster exchange of students with their peers in industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K038656/1
    Funder Contribution: 4,980,770 GBP

    Evolution over the eons has made Nature a treasure trove of clever solutions to sustainability, resilience, and ways to efficiently utilize scarce resources. The Centre for Nature Inspired Engineering will draw lessons from nature to engineer innovative solutions to our grand challenges in energy, water, materials, health, and living space. Rather than imitating nature out of context or succumbing to superficial analogies, research at the Centre will take a decidedly scientific approach to uncover fundamental mechanisms underlying desirable traits, and apply these mechanisms to design and synthesise artificial systems that hereby borrow the traits of the natural model. The Centre will initially focus on three key mechanisms, as they are so prevalent in nature, amenable to practical implementation, and are expected to have transformational impact on urgent issues in sustainability and scalable manufacturing. These mechanisms are: (T1) "Hierarchical Transport Networks": the way nature bridges microscopic to macroscopic length scales in order to preserve the intricate microscopic or cellular function throughout (as in trees, lungs and the circulatory system); (T2) "Force Balancing": the balanced use of fundamental forces, e.g., electrostatic attraction/repulsion and geometrical confinement in microscopic spaces (as in protein channels in cell membranes, which trump artificial membranes in selective, high-permeation separation performance); and (T3) "Dynamic Self-Organisation": the creation of robust, adaptive and self-healing communities thanks to collective cooperation and emergence of complex structures out of much simpler individual components (as in bacterial communities and in biochemical cycles). Such nature-inspired, rather than narrowly biomimetic approach, allows us to marry advanced manufacturing capabilities and access to non-physiological conditions, with nature's versatile mechanisms that have been remarkably little employed in a rational, bespoke manner. High-performance computing and experimentation now allow us to unravel fundamental mechanisms, from the atomic to the macroscopic, in an unprecedented way, providing the required information to transcend empiricism, and guide practical realisations of nature-inspired designs. In first instance, three examples will be developed to validate each of the aforementioned natural mechanisms, and simultaneously apply them to problems of immediate relevance that tie in to the Grand Challenges in energy, water, materials and scalable manufacturing. These are: (1) robust, high-performance fuel cells with greatly reduced amount of precious catalyst, by using a lung-inspired architecture; (2) membranes for water desalination inspired by the mechanism of biological cell membranes; (3) high-performance functional materials, resp. architectural design (cities, buildings), informed by agent-based modelling on bacteria-inspired, resp. human communities, to identify roads to robust, adaptive complex systems. To meet these ambitious goals, the Centre assembles an interdisciplinary team of experts, from chemical and biochemical engineering, to computer science, architecture, materials, chemistry and genetics. The Centre researchers collaborate with, and seek advice from industrial partners from a wide range of industries, which accelerates practical implementation. The Centre has an open, outward looking mentality, inviting broader collaboration beyond the core at UCL. It will devote significant resources to explore the use of the validated nature-inspired mechanisms to other applications, and extend investigation to other natural mechanisms that may inform solutions to problems in sustainability and scalable manufacturing.

    more_vert
  • Funder: European Commission Project Code: 875148
    Overall Budget: 3,746,750 EURFunder Contribution: 2,992,520 EUR

    Solid Oxide Cells are efficient ways to convert variable electricity from renewables in green hydrogen. At the same time, they can be used in a reversible mode to enable the use of other sources (e.g. methane, bio-methane) to match a variable energy production with continuous and guaranteed production of hydrogen for contracted end uses. Switch will focus on the development of this specific solution and realize a mostly green and always secured production of hydrogen, heat and power. Core of the system is a reversible Solid Oxide module based on anode supported electrolyte, supported by an advanced fuel processing unit able to manage steam generation and methane reforming reactions at high efficiency and a purification unit to guarantee highly pure hydrogen in compliance with the main industrial and automotive standards. SWITCH project focuses on the demonstration of a 25kW (SOFC)/75kW (SOEC) system operating in a relevant industrial environment for at least 5000 hrs. Part of the activities will be focused on the issue of cost competitiveness and environmental impact, with the target of the hydrogen price lower than 5 €/kg. The basic solution will be designed to be up scalable to bigger sizes and thus reaching target applications in other different sectors such as industrial, residential and grid services. The modularity, low transient times, an integrated gas treatment unit and different modules combined in between SOFC and SOE mode will set a solution able to modulate between different sources and a flexible production of hydrogen, heat and power, with specific use cases considered.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N016084/1
    Funder Contribution: 638,525 GBP

    The storage of CO2 in deep geological formations is one of the chief technological means of reducing anthropogenic emissions of CO2 to the atmosphere. The process requires capturing CO2 at source (e.g. coal-fired power plants), transporting CO2 to the injection site, and pumping liquefied CO2 into kilometre deep, porous reservoirs that are typically initially saturated in saline water or previously contained oil or gas. Initially, buoyant CO2 tends to rise through the porous reservoir until it is trapped by an impermeable horizon, in the same way that oil or gas has been trapped over millennia. Subsequently, buoyant CO2 may be more securely trapped by dissolving CO2 into water (carbonated water is more dense than non-carbonated water and will sink), or by capillary forces acting to hold the CO2 in the small confines of the pore space. Any risk of buoyant CO2 migrating through the overburden is therefore reduced by these trapping processes. Constraining the rates of dissolution and capillary trapping in realistic geological overburden is a key component of strategies to quantify and reduce the risks of leakage. The UK is geologically well placed to implement offshore CO2 storage, with many potential reservoirs in the North Sea. This proposal will improve our understanding of the risks of leakage through the overburden by quantifying trapping rates in faults and heterogeneous strata typical of the overburden of North Sea reservoirs, and by quantifying our ability to seismically detect any CO2 in the overburden. CO2 is less viscous than water and will finger along more permeable layers. Sedimentary strata exhibit large variations in permeability on all scales that will substantially increase the rates at which CO2 dissolves in the formation waters. The analysis, while general in scope and resultant techniques, is applied to the Goldeneye field, a target for CO2 storage and a candidate for the Government's CCS commercialisation competition. Our approach is to geologically characterise the relevant geological heterogeneity within the overburden, and to map the structure and propensity for fluid flow within faults in that locality. Drill core provides samples of rock (5x20 cm) that can then be interrogated in the laboratory. We will directly image, at conditions typical of the overburden, the rates of fluid flow, dissolution, and capillary trapping both at the scale of individual pores within the rock (microns) and over the length of the core (centimetres). Geochemical analysis of the fluids will allow us to measure in situ dissolution and precipitation rates in our core flooding experiments. In order to determine how rates of flow and trapping may be applied at the scale of the reservoir and overburden the results must be interpreted in light of flow through 1-100 centimetre scale geological heterogeneities and along faults. To assess the impact of heterogeneities on the rates of trapping we will construct simplified models of flow along predominantly layered strata, or along cross-cutting faults, along with laboratory analogue experiments in which we can optically assess trapping rates and thereby provide a firm benchmark for our predictions. Finally, at larger scales, we will image flow up chimney structures in existing CO2 experiments (eg Sleipner in the North Sea) and thus provide quantitative estimates of our ability to seismically resolve leakage pathways in the storage overburden. Our proposal will develop tools needed to geologically characterise the North Sea overburden, provide quantitative estimates of trapping rates in geologically complex overburden and fault complexes, and demonstrate the ability to seismically resolve fluid flow pathways. To date geological CO2 storage has been demonstrated at relatively safe storage sites. This work would greatly expand the potential for geological CO2 storage by quantifying the potential risks associated with leakage in more geologically complex storage sites.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.