Powered by OpenAIRE graph
Found an issue? Give us feedback

CUSTOMCELLS HOLDING GMBH

Country: Germany

CUSTOMCELLS HOLDING GMBH

7 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101069765
    Overall Budget: 6,823,420 EURFunder Contribution: 6,796,760 EUR

    The IntelLiGent project answers to the need for general public acceptance of EVs, by facilitating the industrial deployment of next-generation batteries allowing for an increased driving range, fast charging capabilities, low cost and increased safety. IntelLiGent will develop European generation 3b high voltage (>4.7 V) LIBs with increased energy density (>350-400 Wh/kg, 750-1000 Wh/l), charge acceptance (>2C) and cycle-life (>2000 deep cycles) compared to the state-of-the-art, while reducing cost (<100 €/kWh on pack level) and carbon footprint of the produced cells. The ambitious goals will be realized through optimized cells produced with; - High-voltage spinel LNMO cathode materials engineered to enhance stability and enable aqueous processing whilst exploring strategies to increase specific capacity beyond the theoretical maximum of standard LNMO - Energy efficient high-capacity stable Si-Gr anodes delivering 850 mAh/g - High-voltage electrolytes with innovative additives that form protective layers on the anode and the cathode - Self-mitigating and healing binders and separators minimize parasitic reactions and degradation - Novel open-source modelling tools and high-throughput screening will be employed to accelerate the development of environmentally benign materials with minimized use of critical raw materials -Optimized electrode design (≥4.5 mAh/cm2) and cell design-based commercial-scale automotive cells (20 Ah) as well as battery modules (1 kWh) at TRL 6 From an industrial viewpoint, a prerequisite for succeeding is continuity in battery R&D&I projects and training/education of required staff, which IntelLiGent will foster by broad dissemination and exploitation of the project results across the battery value chain. The project will result in strengthening of the European battery value chain by developing European industries with leading-edge technologies on battery materials, and allowing for accelerated roll-out of electrification for mobility.

    more_vert
  • Funder: European Commission Project Code: 101069508
    Overall Budget: 7,999,560 EURFunder Contribution: 7,999,560 EUR

    HighSpin aims to develop high-performing, safe and sustainable generation 3b high-voltage spinel LNMO||Si/C material, cells and modules with a short industrialisation pathway and demonstrate their application for automotive and aeronautic transport applications. The project addresses in full the scope of the HORIZON-CL5-2021-D2-01-02 topic, setting its activities in the “high-voltage” line. The project objectives are: • Further develop the LNMO||Si/C cell chemistry compared to the reference 3beLiEVe baseline, extracting its maximum performance. • Develop and manufacture LNMO||Si/C cells fit for automotive and aeronautic applications. • Design and demonstrate battery modules for automotive and aeronautic applications. • Thoroughly assess the LMNO||Si/C HighSpin technology vs. performance, recyclability, cost and TRL. The HighSpin cell delivers 390 Wh/kg and 925 Wh/l target energy density, 790 W/kg and 1,850 W/l target power density (at 2C), 2,000 deep cycles, and 90 €/kWh target cost (pack-level). The project activities encompass stabilisation of the active materials via microstructure optimisation, the development of high-voltage electrolyte formulations containing LiPF6 and LIFSI, high-speed laser-structuring of the electrodes, and the inclusion of operando sensors in the form of a chip-based Cell Management Unit (CMU). HighSpin will demonstrate TRL 6 at the battery module level, with a module-to-cell gravimetric energy density ratio of 85-to-90% (depending on the application). Recyclability is demonstrated, targeting 90% recycling efficiency at 99.9% purity. HighSpin aims at approaching the market as a second-step generation 3b LNMO||Si/C in the year 2028 (automotive) and 2030 (aeronautics), delivering above 40 GWh/year and 4 billion/year sales volume in the reference year 2030.

    more_vert
  • Funder: European Commission Project Code: 101069681
    Overall Budget: 8,366,960 EURFunder Contribution: 8,366,960 EUR

    To support the upcoming short-term needs of the battery industry, it is imperative to have new differentiating European battery technology for 4b generation batteries on the market from 2025. Halide solid state batteries for ELectric vEhicles aNd Aircrafts (HELENA) responds to the need of the development of a safe, novel high energy efficiency and power density solid state battery (4b generation batteries) cells, based on high capacity Ni-rich cathode (NMC), high-energy Li metal (LiM) anode and Li-ion superionic halide solid electrolyte for application in electric vehicles and, especially in aircrafts. HELENA will support Europe, in this sense, on its transition towards a climate-neutral continent since electric aviation is poised to take off within the next five to 10 years, with innovations already being pursued for electric vehicle batteries. Moreover, HELENA will avoid dependence on Asia for battery production. HELENA is built by a multidisciplinary and highly research experienced consortium that covers the whole battery value chain and proposes a disruptive halide-based solid-state cell technology with the overall aim to significantly increase the adoption of these batteries on aircrafts and EVs The technical challenges that are presented by current conventional battery technology and the consumer needs will be overcome - especially the reduction in costs of battery devices, enable scalable and safe cell manufacturing, increasing their capabilities for long distance traveling and fast charging, ensuring a high safety of the battery.

    more_vert
  • Funder: European Commission Project Code: 101101967
    Overall Budget: 43,976,800 EURFunder Contribution: 33,323,800 EUR

    NEWBORN focuses on realistic and commercially viable project outcomes significantly exceeding the Call topic Expected Outcomes. This is the only path to bring a real impact, well beyond paperwork and test rigs. With this in mind, the project applies the steppingstone principle and intends to bring aviation graded fuel cells into the market as soon as safely possible. This will generate operational data to support certification on CS-25 aircraft. It will further provide vital acceptance gap mitigation in the conservative air transport environment. The 18 multi-disciplinary partners, including 3 non-traditional aerospace partners and 2 SMEs, will work on 28 key enabling technologies. They will be matured and optimized to support an EIS of CS-23 aircraft by 2030 and regional aircraft by 2035. The ambition of the project is to achieve an overall propulsion system efficiency of 50% by 2026, calculated as a ratio of energy on the propeller shaft to the hydrogen lower heating value. This ambition greatly surpasses the expected outcome of the HPA-02 Call. Similarly, by the end of 2025, the project will demonstrate widely scalable fuel cell power source technology with a power density of >1.2 kW/kg and stack power density of >5 kW/kg. Technologies will be adaptable to different maximum flight altitudes of ≤ FL250 and ≤FL450, and scalable down to ~250kW and reusable for secondary power in SMR flying altitudes by 2026. An innovative cryogenic tank concept will be integrated, demonstrating a gravimetric index of 35% for the CS-23 aircraft and scalable up to 50% for regional aircraft. The project will also address high power density high voltage energy conversion, propulsion systems, and the next generation microtube heat exchangers, along with an accurate digital twin of the overall system. All together, NEWBORN will develop a technology demonstrator prepared for flight demonstration in Clean Aviation Phase 2.

    more_vert
  • Funder: European Commission Project Code: 875033
    Overall Budget: 10,833,800 EURFunder Contribution: 10,833,800 EUR

    3beLiEVe aims at delivering the 3b generation of LNMO cells for the electrified vehicles market of 2025 and beyond. The project addresses the full scope of the LC-BAT-5-2019 call by delivering: • 3b generation batteries with LNMO cathodes, LiFSI electrolyte, and a 10-20 wt.% Si-C anode in a cell architecture capable of 750 Wh/l, 300 Wh/kg, 1.4 kW/kg, and 2,000+ deep cycles, of which 10% at 3C+; • a portfolio of internal and external sensors (22 sensors per module) and an adaptive liquid cooling system managed by a smart BMS with advanced diagnostic and operational functions; • cradle to cradle approach, including cell/module/pack green manufacturing processes (gigafactory level), optical equipment for inline quality inspection, 1st and 2nd life performance and recyclability demonstration, achieving 90 €/kWh life cycle cost. The project will deliver 250 cells of generation 3b in total and two demonstrator battery packs of 88 cells and 12 kWh capacity each at TRL 6 / MRL 8. These aim at demonstrating the 3beLiEVe technology performance for applications in light duty (i.e. passenger cars, freight vehicles) and commercial vehicles (i.e. city buses and trucks) in fully electric/plug-in hybrid (BEV/PHEV) configurations. 3beLiEVe technology is free of critical raw materials (cobalt and natural graphite), scalable and sustainable, aiming at 12.7 GWh production by 2025 and 33.7 GWh in 2030, for a market ranging from 1.1 to 2.5 billion €/year, i.e. 7% of the global manufacturing capacity. All the technological domains and innovations addressed in 3beLiEVe are essential for strengthening the position of the European battery and automotive industry in the future market of xEVs.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.