Powered by OpenAIRE graph
Found an issue? Give us feedback

South West Research Institute

South West Research Institute

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/H024433/1
    Funder Contribution: 390,031 GBP

    The subject of our study is the aurora borealis, or northern lights, which is an amazing natural lightshow in the sky, seen regularly at high latitudes such as northern Scandinavia, but rarely at the latitudes of the UK. We use the aurora as a diagnostic to find out many things about the environment around the Earth, mainly in the region of upper atmosphere called the ionosphere. That environment is made up of 'plasma' (ionised gas) often called the fourth state of matter, which makes up over 95% of the directly observable material in the cosmos. Yet it is strangely difficult to maintain and study within Earth's biosphere. The upper atmosphere provides an ideal natural laboratory for its study since there is no need to consider collisions of the plasma with container walls. The story of the aurora begins at the Sun, which is a continuous but very variable energy source, in the form of a plasma stream (the 'solar wind') which impacts on the Earth. We are interested in understanding the smallest scale auroral structures, and how the energy changes within them influence the large scale environment. To study the aurora, we use a special instrument which has three cameras looking at different 'colours' simultaneously. The proposed research is for studies of very dynamic and structured aurora at the highest possible resolution. The instrument is named ASK for Auroral Structure and Kinetics. It was designed to measure a small circle of 3 degrees in the 'magnetic zenith' i.e. straight up along the Earth's magnetic field. Particles from the Sun spiral along these imaginary magnetic field lines, and lose energy when they collide with atmospheric oxygen and nitrogen. The exact colour (or wavelength of the light) depends on how much energy the incoming particle started with, and what molecule or atom it hits. The ASK cameras help to unravel this complicated process by making very precise measurements in space and time of three emissions which have different physical origins. We will combine these optical measurements with measurements from special radar experiments, which are designed to use a technique known as interferometry to measure structures smaller than the beam width, and with accuracy of position and height better than has been possible to date. The radar imaging technology is new in the field of incoherent scattering radar and will be one of the cornerstones of a future project that is called EISCAT_3D. The technology employed is Aperture Synthesis Imaging Radar (ASIR). It is very similar to the technology used by radio astronomers (VLBI, Very Long Baseline Interferometry) to image stellar objects, and also has some similarity with the SAR (Synthetic Aperture Radar) technique used onboard airplanes and satellites to map the Earth's surface and other planetary surfaces. In the radio astronomy case the source itself spontaneously emits radiation that is collected by a number of passive antennas. In ASIR, the radar transmitter acts like a camera flash to illuminate the target (the ionosphere or atmosphere) and a number of antennas collect the scattered radiation exactly as in the radio astronomy case (or like the lens of a camera). From this point on, the two cases are essentially identical. To construct the image of the target, the cross-correlation between the signals is calculated from all different pairs of receivers. By using the radar imaging technique we will become the pioneers of this new technique in Europe.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/S000615/1
    Funder Contribution: 870,129 GBP

    How do stars and planetary systems develop and is life unique to our planet? This is one of the most fundamental of questions in science and has deeply profound implications for our place in the cosmos. It is thus a key scientific challenge set by the Science and Technology Facilities Council. Our planet formed 4.5 billion years ago along with the Sun and the other planets and minor bodies in our Solar System. Only by understanding the details of how our Solar System formed can we hope to find an answer. We now know how stars and planetary systems form in general. We know that stars form by the collapse of interstellar clouds of dust and gas, and planets are constructed in disks of dust and gas surrounding these young stars. There is, however, much we don't know about how our Solar System formed. Why, for example, are all the planets so different? Why is Venus an inferno, Mars a frozen rock, and Earth a haven for life? The answer lies in events that predated the assembly of the planets. Our research program focuses on answering key outstanding questions in this early history of the Solar System. The source of presolar dust provides a context to our solar system. From what types of star was dust derived and is this mixture typical of other planetary systems? Some of this dust still remains preserved within ancient meteorites and reveals that at least 30 stars produced building blocks for our planets. We aim to sample many more stars by looking for interstellar dust preserved on the Earth's surface within sediments accumulated throughout our planet's history. This will provide a full ingredient list for planetary systems, not just our own. How planetary materials changed after the dust was assembled into larger bodies is crucial in making planets that are suitable for life. Our research will examine whether primitive planetesimals, the early forerunners of planets, melted and mixed internally by examining the evidence for early magnetic fields within meteorites. Our research will evaluate whether ancient magnetic traces already found in meteorite minerals are reliable indicators of the dynamos of metallic cores. Volatile constituents are vital to life but easily lost by heating and they differ greatly in abundance between planets in our solar system. Our research focuses on the volatile budgets of the terrestrial planets, to identify the source of the volatiles and determine when they were added. For this, the research examines the isotopes of selenium and tellurium and is made possible by technology and method advances that will be pioneered in the study. As such, the work will help us understand how planets acquire the ingredients essential to the formation life. Large quantities of volatiles, organic matter and energy, were delivered to the terrestrial planets in a prolonged period of intense bombardment in the early solar system, which likely had a profound influence on the emergence and evolution of life. Large craters that scar the Moon, Mars, Venus and large asteroids provide a record of this bombardment, but one that is challenging to decode. By simulating large crater formation using advanced numerical models, we aim to link observed crater populations to the impactors that formed them and constrain the timing and source of their delivery to the inner solar system. Finally, what constitutes a planet "suitable for life"? To date only Earth is known to have living things. Whilst the search for life on Mars continues, many believe that living organisms are more likely within the ice-covered oceans of the moons of Jupiter and Saturn. Our research will focus on recognizing the molecular signature of life within the atmospheres and outflows from icy-moons using experiments and world-leading analytical techniques. This research could provide the first convincing evidence for life beyond Earth and widen our view of the right kind of planet.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.