
Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica
Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica
6 Projects, page 1 of 2
assignment_turned_in Project2021 - 2021Partners:Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof FysicaRadboud Universiteit Nijmegen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof FysicaFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 483.20.030Science and scientists have always been efficient means to maintain dialogue between countries. Neither the Netherlands nor Russia supports programmes for mutual scientific cooperation, while Russia does have such bilateral agreements with Germany, France, Austria, and Flanders (Belgium). As a result, the Netherlands lacks the possibility for scientific diplomacy with Russia. We propose a multidisciplinary forum, which will unite researchers from the fields of linguistics, history and physics. This forum may help to define actions to stimulate scientific collaborations between our countries and propose topics for ambitious collaborative megaprojects aiming to address the most urgent problems of our societies.
more_vert assignment_turned_in Project2016 - 2023Partners:Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut voor Onderzoek in de Natuurkunde (LION), Huygens-Kamerlingh Onnes Laboratorium, Universiteit van Amsterdam, Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut Onderzoek Natuurkunde Quantumoptica B, Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, MoNOS, Huygens Laboratorium, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics +15 partnersUniversiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut voor Onderzoek in de Natuurkunde (LION), Huygens-Kamerlingh Onnes Laboratorium,Universiteit van Amsterdam,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut Onderzoek Natuurkunde Quantumoptica B,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, MoNOS, Huygens Laboratorium,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut voor Onderzoek in de Natuurkunde (LION),Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leids Instituut voor Onderzoek in de Natuurkunde (LION), Interface Physics,Radboud Universiteit Nijmegen,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Condensed Matter and Interfaces,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,Universiteit Twente,Universiteit Utrecht,Universiteit Utrecht, Instituut voor Theoretische Fysica,Leiden University,Technische Universiteit Delft,Technische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Microelectronics, Delfts Instituut voor Micro-Electronica en SubmicrontechnologieFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.010.2015.050The project has shown that we can perform multiple vibration sensitive experiments in a cryogen free dilution refrigerator. In such a cooling system, temperatures of 20 milliKelvin can be reached, but this goes with substantial vibrations, because of a large compressor. The design concept used to fight these vibrations has proven to work. Through this, scanning probe experiments are possible again at these temperatures, without the need of expensive liquid Helium.
more_vert assignment_turned_in Project2020 - 9999Partners:Universiteit van Amsterdam, Radboud Universiteit Nijmegen, Rijksuniversiteit Groningen, Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft, Radboud Universiteit Nijmegen +21 partnersUniversiteit van Amsterdam,Radboud Universiteit Nijmegen,Rijksuniversiteit Groningen,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft,Radboud Universiteit Nijmegen,Rijksuniversiteit Groningen,Radboud universitair medisch centrum,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica,Universiteit Twente,Universiteit van Amsterdam,Technische Universiteit Delft,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Theoretische Fysica,Universiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen,Universiteit Utrecht, Instituut voor Theoretische Fysica,Universiteit Twente,Radboud universitair medisch centrum,Universiteit van Amsterdam, Projectenbureau FNWI,Universiteit Twente, Faculty of Science and Technology (TNW), Lage Temperaturen,Technische Universiteit Delft,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM), Scanning Probe Microscopy,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM),Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology, Transducers Science and Technology (TST)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.GROOT.2019.048Researchers are continuously looking for materials with novel electronic properties. In this program, we combine two fields of research to create materials that respond sensitively to disturbances and where these disturbances can lead to topological changes in the electronic structure. By making use of external stimuli such as electric and magnetic fields or elastic deformations, we will create the first materials in which topological phase transitions are realized.
more_vert assignment_turned_in Project2014 - 9999Partners:Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof FysicaRadboud Universiteit Nijmegen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof FysicaFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 184.033.116The High Field Magnet Laboratory (HFML) in Nijmegen produces some of the worlds highest continuous magnetic fields. These magnetic fields facilitate pioneering research in a number of diverse scientific domains and attract many top-class researchers to the Netherlands. The HFML is scientifically successful, has a global reputation for both its in-house research and that of its user program, is committed to advanced materials research in line with the governments topsectors initiative and stimulates technology and innovation. The Nobel Prize winning work on graphene by Geim and Novoselov, part of which was carried out at the HFML, is a salient confirmation of these facts. The scientific motivation to use high magnetic fields in experiments and to invest in expanding their range of application is that new discoveries in technologically important materials, such as giant magnetoresistance devices, high electron mobility transistors, high temperature superconductors and graphene, are often made at the highest available magnetic fields. This is because a magnetic field changes the internal energy of a material, leading to the emergence of new phases and physical properties. Moreover, high magnetic fields are often involved in the first phase of the innovation cycle at the early stages of new material research, when sample quality has not yet been optimised. The HFML is one of only four user facilities in the world delivering continuous magnetic fields in excess of 32 Tesla. It has a world class magnet development program with a 38 T resistive magnet in production and a 45 T hybrid magnet that will become operational in 2016. Radboud University (RU) and FOM jointly run the HFML, with the shared goal of making it a global player with a prominent role in the European Magnetic Field Laboratory (EMFL). Indeed, the HFML is currently coordinating the foundation of the EMFL, one of the projects on the European Strategic Forum for Research Infrastructures (ESFRI 2008) Roadmap and since 2008, the HFML has been listed on the Dutch national Roadmap for Large-Scale research facilities. The HFML is a unique example of an affordable yet large-scale research infrastructure on Dutch territory with high scientific and innovative impact. The benefits for the Netherlands are: i) A prestigious scientific installation attracting the best scientists from around the world to create a vibrant, multi-national environment that stimulates research activities in a number of diverse scientific fields. The subsequent exposure to the forefront of materials research carries tremendous benefits for Dutch society as a whole. ii) A motor for innovation in the top sectors defined by the Dutch government; most promising of which being the opportunities in the top-sector areas of high-tech systems and materials, chemistry and life sciences. iii) The development of large and advanced scientific instrumentation - a motor for technological innovation that greatly benefits Dutch companies. iv) Together with the FELIX free electron laser now co-located with the HFML, a unique international user facility that provides fully synchronised optical and magnetic perturbations on both soft and hard condensed matter. In the Roadmap application of 2011, a budget of 25.4 M€ was requested to upgrade the HFML to a fully developed research facility operating at its technical capacity, to execute all of the most scientifically promising user proposals, to continue the development of advanced magnet technology and to remain at the forefront of international competition. In March 2012, NWO granted 11 M€ of that sum, inviting the HFML to submit a second application in two years, in which evidence of progress towards these collective goals could be demonstrated. This new proposal duly describes those developments and subsequent successes and spells out our vision for the HFML in securing a determining position in high magnetic fields, not just within the European context, but also on the rapidly changing global scale. The total sum requested in this round is 19.8 M€. This carefully revised figure includes a request for additional resources for new innovations that we seek to develop over the next five years and reflects the expanding scientific profile of the institute. These developments will guarantee the HFML?s status as a distinctive and pioneering centre of excellence in high magnetic field research and technology and lay the foundations for a sustainable and secure long-term future.
more_vert assignment_turned_in Project2017 - 2023Partners:Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud University Nijmegen Medical Center, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica +1 partnersRadboud Universiteit Nijmegen,Radboud Universiteit Nijmegen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud University Nijmegen Medical Center,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM), Spectroscopy of Solids and Interfaces (SSI)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 680-47-626Controlling the magnetic state of media with the lowest possible cost of energy and simultaneously at the fastest possible time-scale is a new and great challenge in fundamental magnetism. At the same time this is becoming an increasingly urgent issue in technology, where data centers already consume 5% of the world electricity production. A femtosecond laser pulse excites magnets much faster than characteristic times of atomic, orbital and spin motion and steers magnetization dynamics along yet unexplored, non-thermodynamic routes. One of these routes was discovered by our group showing that a femtosecond laser pulse could facilitate the fastest ever write-read magnetic recording event, accompanied by a record low, but still substantial, dissipation. Inspired by these opportunities this project aims to challenge the borders of femtosecond opto-magnetism and to achieve the fastest, least dissipative switching of the order parameters in ferroics. For this purpose, we suggest to employ the strongest interactions in magnetism – the spin-orbit interaction and the exchange coupling between spins. Exploiting these interactions can lead to ultrafast changes in the magnetic order so that the entropy of the medium does not have time to increase and consequently the heat load vanishes. To reach these goals we will employ high magnetic fields, the strength of which is getting comparable to that of the spin-orbit and the exchange interactions, and electromagnetic radiation in a broad spectral range including photons with energies at the scale of the exchange energy. This project will benefit from the world-unique combination of high magnetic fields (up to 38 Tesla), Free-Electron Lasers for Infrared eXperiments (FELIX) and table-top femtosecond laser sources available in Nijmegen. Although the proposed research is fundamental in nature, in collaboration with SPINTEC (Grenoble) we plan to come with a proof of concept of a new femtosecond laser-assisted memory.
more_vert
chevron_left - 1
- 2
chevron_right