Powered by OpenAIRE graph
Found an issue? Give us feedback

TNO Delft

7 Projects, page 1 of 2
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1160.18.208

    Quantum technology has the potential to transform global industries and markets. Large public and private investments now support worldwide research efforts in quantum computing, sensing, and communications. This envisioned quantum/nano revolution will require an unprecedented understanding of the behavior of electrons and spins in quantum devices. As such, there is an urgent need for sensitive microscopy tools that can probe individual spins and nanoampere currents with few-nanometer resolution. Magnetic imaging could provide a powerful, non-invasive approach to meet this need, but state-of-the-art techniques either lack the resolution, sensitivity, and/or temperature compatibility. We propose to develop a prototype scanning-probe microscope that uses individual spins in diamond as quantum sensors. This ‘quantum microscope’ will enable magnetic imaging of single spins and nanoampere currents with nanoscale resolution in a temperature range from ~10 millikelvin to above room temperature. As proof-of-principle, we will apply the microscope to investigate the nanoscale homogeneity and conductivity of CVD-grown graphene and to study electron flow in quantum-Hall interferometers, which are promising devices for investigating the exotic statistics of fractional charges. To develop this microscope we have assembled a multidisciplinary consortium that brings together key expertise in millikelvin scanning-probe microscopy, nanofabrication, quantum materials, optical engineering, and quantum sensing. By joining universities (Delft and Leiden), applied research (TNO), and industry (Leiden Spin Imaging BV and Applied Nanolayers BV), we cover the entire knowledge chain, from fundamental and applied research to prototyping and product development. Our results will fill a critical need for academic and applied research efforts that aim to develop quantum technologies. The proposed broad temperature range and nanoscale resolution enables a wide range of experiments, including in quantum-Hall physics, graphene devices, electron liquids, magnetic molecules and magnetic vortices. Our microscope will thus provide a key enabling technology for the quantum/nano revolution.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1160.18.095

    Background: Cancer is first-leading cause of adult deaths. Radiation therapy based on x-rays cure approximately 50% of all cancer patients and is a fundamental pillar in cancer treatment. But, collateral damage of healthy surrounding tissues is unavoidable. Proton beams differ from x-rays by the fact that their penetration depth is sharply determined and release their energy at the Bragg peak. The problem: In proton beam therapy the dosimetry is determined by simulations of the proton deposition in the tissue. However, organ movement and errors in the assumed material properties lead to inaccuracy of the deposition. The Solution: We propose a non-invasive, in-situ, real-time localization system for proton therapy monitoring using ultrasound contrast agents and highly sensitive optical-acoustical receivers. Our concept consists of two innovative steps. The first step is the interaction of the proton beam with a medical ultrasound contrast agent consisting of coated microbubbles. The energy deposition from individual protons in the Bragg peak creates a broadband excitation in the vicinity of the bubble forcing them to vibrate at their resonance frequency (1-10 MHz). This creates a low amplitude pressure wave that can be used for localization and dose measurement of the proton beam. The second step entails the development of an array of ultra-sensitive acousto-optical ultrasound sensors for detecting the acoustic pressure waves generated by the microbubbles, which is one order of magnitude below the detection limit of current state-of-the-art ultrasonic sensors. Acousto-optical sensors consist of a silicon chip with an extremely thin membrane that will already be deflected by very small acoustic pressure amplitudes. This deflection will be detected by a micro-optical circuit that is integrated on the membrane. Using the microbubbles and these highly sensitive receivers allows for a real-time monitoring of the proton deposition with a spatial resolution better than 1 mm.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 439.16.602

    De samenwerking tussen bedrijven in de bouwsector verloopt moeizaam, waardoor mogelijkheden om effectiviteit en duurzaamheid van bouwprocessen te verbeteren blijven liggen. Innovaties op gebied van ketenregie en 4C (Cross Chain Control Center) kunnen deze samenwerking verbeteren. Het TKI-toeslag project “4C in bouwlogistiek” (2014-2016) heeft een eerste invulling gegeven aan deze ambitie. De opgedane ervaringen tonen aan dat toepassen van slimme bouwlogistieke oplossingen loont, zowel op gebied van duurzaamheid als op versnelling van projectdoorlooptijd en logistieke kosten. Daarnaast is gebleken dat de informatie uitwisseling zwak is. Het hier voorgestelde innovatiecluster geeft opvolging aan dit project en gaat in op de behoefte aan innovatie op 4C control towers voor bouwlogistiek. Binnen het innovatiecluster worden nieuwe concepten voor bedrijfsoverstijgende ketenregie en distributie onderzocht en in de praktijk bij concrete bouwprojecten (de proeftuinen) toegepast met deelnemende bedrijven. Een belangrijk onderdeel van het onderzoek bestaat uit het toepassen van een 4C control tower voor bouwlogistiek binnen nieuw te starten proeftuin bouwprojecten. Een andere innovatie voor ketenregie in de bouw betreft de integratie van logistieke informatie en rekenmodellen in het Bouwwerk Informatie Model (BIM). BIM is een geïntegreerde database met alle informatiecomponenten behorende bij een bouwwerk. Koppeling van BIM met bouwlogistieke data en rekenmodellen biedt de mogelijkheid om verschillende concepten te vergelijken. Centraal in het innovatiecluster staat de interactie met de proeftuinen, waardoor aansluiting van de concepten met de praktijk gegarandeerd wordt. De kennis en ervaringen worden via bestaande en verder uit te breiden community “Platform Logistiek in de Bouw” breed gedeeld binnen de bouwsector.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 184.037.012

    The KM3NeT collaboration is building a neutrino telescope at two locations at the bottom of the Mediterranean Sea. The telescope is used to investigate properties of neutrinos; neutrinos are elementary particles that are not well understood yet. Furthermore, the telescope searches for neutrinos from the cosmos and performs neutrino astronomy. Using a new type of hydrophones, KM3NeT will also start listening to the sea, for future detection of ultra-high-energy neutrinos. This data are also of major interest for research on deep-sea sea-life, including hunting whales.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 645.200.009

    This project aims to apply a complex adaptive systems approach in analysing the transition of manufacturing and logistics systems into a sustainable economy format at the level of industries (supply chains to supply circles) and feedback mechanism underlying their connection with the transition dynamics towards a resource efficient economy.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.