Powered by OpenAIRE graph
Found an issue? Give us feedback

Renishaw Diagnostics Ltd

Renishaw Diagnostics Ltd

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/R02961X/1
    Funder Contribution: 1,895,190 GBP

    SoRo for Health is a unique interdisciplinary Platform uniting three new and rapidly advancing areas of science (soft robotics, advanced biomaterials and bioprinting, regenerative medicine) in a collaboration that will deliver transformative technological solutions to major unmet health problems. We are a collaborative scientific group including representatives from three of the most exciting and rapidly advancing technology areas in the world. Soft robotics is a new branch of robotics that uses compliant materials to create robots that move in ways mirroring those in nature; a new paradigm that is already transforming fields as diverse as aerospace and manufacturing. Advanced biomaterials is a rapidly progressing field exploring the application of novel and conventional materials to restoring structure and function. It has recently been augmented by advances in 3D- and Bio-printing with seminal clinical breakthroughs. Regenerative medicine uses a range of biological tools, such as cells, genes and biomaterials, to replace and restore function in patients with a range of disorders. It explores the interface between materials and cells and tissues and has been applied to regenerate critical organs and tissues. Our three groups have combined over the last few years to develop a range of prototype solutions to unmet health needs, in areas as diverse as breathing and swallowing, motor disorders and cardiovascular disease. Here we seek to further coalesce our activity in a unique EPSRC Platform with five primary goals. Firstly and most importantly, we will support, retain and develop the careers of three dynamic rising stars (postdoctoral research assistants, PDRAs) who might otherwise be lost from the field. Primarily supporting their career development, we will thereby also ensure the provision of a cadre of stellar individuals with cross-cutting scientific skills and leadership training who can provide leadership and direction to this nascent, but incredibly exciting, field of Soft Robotics (SoRo) for Health. This will benefit these scientists, the field, and the UK through scientific advance and commercial partnerships. Secondly, we will support our PDRAs to explore novel and high-risk hypotheses related to our combined fields through a flexible inbuilt funding stream. This will help their development, but also generate new ideas and technologies to take forward towards further scientific exploration and, where appropriate, clinic; ideas that might otherwise have fallen by the funding wayside. Thirdly, we will expand and develop a vibrant international network that will further support the development of our stars as well as energising the whole field internationally, with its hub here in the UK. Fourthly, we will engage with end-users, from both healthcare professional and patient/carer communities. We will use professional facilitators and established qualitative techniques to identify the key challenges and opportunities for SoRo as it seeks to address the outstanding and imminent issues in population health and healthcare. Finally, we will work with UK industry and biotech business leaders to develop an effective, streamlined route to IP protection, application and commercialisation that gives SoRo for Health technologies the best possible chance for widespread health gains and speedy application to those in need. Thus, the SoRo for Health Platform combines the talents, and specifically emergent talents, of internationally-leading groups in three new areas with the common Vision of transforming the lives of millions through the development of responsive, customised soft robotic-based implants and devices to address some of the major unmet health challenges of the 21st Century.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K028510/1
    Funder Contribution: 794,457 GBP

    The ability to look at small numbers of molecules in a sea of others has appealed to scientists for years. On the fundamental side we want to watch in real time how molecules undergo chemical reactions directly, how they explore the different ways they can come together, interact and eventually form a bond, and ideally we would like to influence this so that we can select just a single product of interest. We also want to understand how molecules react at surfaces since this forms the basis of catalysis in industrially relevant processes and is thus at the heart of almost every product in our lives. However, most scientific studies take place in precise conditions achieved in the laboratory, such as high vacuum, to select the cleanest possible conditions, but which look nothing like the real world applications they simulate. Hence most knowledge is empirical and pragmatically optimised. We have been working on a completely new way to watch chemistry in an incredibly tiny test tube, itself a molecule. We use a barrel-shaped molecule called a 'CB' that can selectively suck in all sorts of different molecules. Recently, we have found a way to combine these barrel containers with tiny chunks of gold a few hundred atoms across, in such a way that shining light onto this gold-barrel mixture focuses and enhances the light waves into tiny volumes of space exactly where the molecules are located. By looking at the colours of the scattered light, we can work out what molecules are present and what they are doing, with enough sensitivity to resolve tiny numbers. Our aim in this grant is to explore our promising start (that was seeded by EU funding). We aim to develop all sorts of ways to make useful structures that sense neurotransmitters from the brain, protein incompatibilities between mother and foetus, watch hydrogenation of molecules take place, find trace gases that are dangerous, and many others. At the same time we want to understand much more deeply and carefully how we can go further with such ideas, from controlling chemical reactions happening inside the container, to making captured molecules inside flex which can result in colour-changing switches. To make all this happen we take research groups spanning physics and chemistry and completely mix them up, so that they can work together on these very interdisciplinary aspects. We have found this works extremely well. We also involve a number of companies and potential end users (including the NHS) who know the real problems when trying to exploit these technologies in important areas including diagnostics, imaging and catalysis.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G060649/1
    Funder Contribution: 3,510,870 GBP

    Visible light can be made to interact with new solids in unusual and profoundly different ways to normal if the solids are built from tiny components assembled together in intricately ordered structures. This hugely expanding research area is motivated by many potential benefits (which are part of our research programme) including enhanced solar cells which are thin, flexible and cheap, or surfaces which help to identify in detail any molecules travelling over them. This combination of light and nanoscale matter is termed NanoPhotonics.Until now, most research on NanoPhotonics has concentrated on the extremely difficult challenge of carving up metals and insulators into small chunks which are arranged in patterns on the nanometre scale. Much of the effort uses traditional fabrication methods, most of which borrow techniques from those used in building the mass-market electronics we all use, which is based on perfectly flat slabs of silicon. Such fabrication is not well suited to three-dimensional architectures of the sizes and materials needed for NanoPhotonics applications, and particularly not if large-scale mass-production of materials is required.Our aim in this programme is to bring together a number of specialists who have unique expertise in manipulating and constructing nanostructures out of soft materials, often organic or plastic, to make Soft NanoPhotonics devices which can be cheap, and flexible. In the natural world, many intricate architectures are designed for optical effects and we are learning from them some of their tricks, such as irridescent petal colours for bee attraction, or scattering particular colours of light from butterfly wings to scare predators. Here we need to put together metal and organics into sophisticated structures which give novel and unusual optical properties for a whole variety of applications.There are a number of significant advantages from our approach. Harnessing self-assembly of components is possible where the structures just make themselves , sometimes with a little prodding by setting up the right environment. We can also make large scale manufacturing possible using our approach (and have considerable experience of this), which leads to low costs for production. Also this approach allows us to make structures which are completely impossible using normal techniques, with smaller nanoscale features and highly-interconnected 3D architectures. Our structures can be made flexible, and we can also exploit the plastics to create devices whose properties can be tuned, for instance by changing the colour of a fibre when an electrical voltage is applied, or they are stretched or exposed to a chemical. More novel ideas such as electromagnetic cloaking (stretching light to pass around an object which thus remains invisible) are also only realistic using the sort of 3D materials we propose.The aim of this grant is bring together a set of leading researchers with the clear challenge to combine our expertise to create a world-leading centre in Soft NanoPhotonics. This area is only just emerging, and we retain an internationally-competitive edge which will allow us to open up a wide range of both science and application. The flexibility inherent in this progamme grant would allow us to continue the rapid pace of our research, responding to the new opportunities emerging in this rapidly progressing field.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F05534X/1
    Funder Contribution: 298,844 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F059396/1
    Funder Contribution: 546,922 GBP

    The ancient art of casting but at the nano-metre scale is being used by our team at the University of Southampton to develop ultra sensitive detectors which are being tested for health screening, and programmable coloured fabrics. Our team of nano-scientists have developed the technique of nano-casting to make nano scale gold structures that enable detection by light of tiny numbers of molecules. The Mesopotamian civilization made moulds from sand to cast molten copper. We use nano-scale plastic spheres for moulds and electroplating techniques to build up our structures. The spheres are suspended in water, a drop of which is evaporated on gold-coated glass leaving a single layer of spheres. The gold is then grown up around the ball 'mould' using electroplating techniques. Finally the balls are dissolved leaving a gold metal structure with 'nano-dishes' and cavities.It is the optical properties of the structure that are key. The tiny cavities are on the scale of the wavelength of light, so they trap the light and concentrate its energy with extraordinary efficiency. The concentrated energy enhances a phenomenonknown as Raman scattering more than a million-fold enabling the reliable detection of molecules at very low concentrations. But the exact way that light is trapped inside these cavities (in a form called a 'plasmon') is still somewhat mysterious, as it is extremely hard to predict. Our project here is to understand and develop the plasmons which can be colour-tuned over the entire spectrum. To do this we can play tricks with a large variety of metals, cavity shapes, and over-coatings.Several applications are in prospect:Raman scattering produces a kind of molecular fingerprint when light in the form of a laser is focused on a sample. The vibrating bonds of the molecules in the sample absorb some of the light and 'scatter' it so that the light emitted from the sample changes colour in a characteristic way depending on the molecules present. A Raman spectrometer is used to measure this effect with the output being a spectrum of the scattered Raman light. The problem however is that Raman scattering is very weak, hard to detect, and on its own is of little practical use in diagnostics. Our gold nano materials amplify Raman scattering so that the molecular fingerprints can easily be detected even when only tiny traces ofsubstances are present. Repeating measurements on the same sample gives the same results within a few per cent, whereas previously huge variations are observed. Such accuracy is obviously vital when screening patients. There are many applications for seeing molecules sensitively. Understanding how molecules bind to surfaces is key for unraveling the mysteries of catalysis (a multi-billion industry). And environmental monitoring of pollutants or bio-hazard detection rely on such possibilities. Diagnosing conjunctivitis using this technique on tears from patients could save the NHS an estimated 471m over 10 years through savings in drugs, laboratory time and the number of patient visits. And there are many other possible diseases including hepatitis, HIV, diabetes and chlamydia that it might be possible to spot in your tears.Another prospective application is in producing low cost solar cells, which can be extremely thin and coated onto plastics. Using the organically-coated gold nano-cavities, light can potentially be very efficiently absorbed and the energy extracted, but we have to ascertain how effective this process can be made.A final intriguing possibility is in making thin films which are strongly coloured, but don't use toxic and carcinogenic dyes. By stretching the films, or connecting them to a battery, their colour can potentially be changed. Hence we plan to test thelimits to this new tuneable colour from our structures.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.