Powered by OpenAIRE graph
Found an issue? Give us feedback

Cambridge Integrated Knowledge Centre

Country: United Kingdom

Cambridge Integrated Knowledge Centre

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J013617/1
    Funder Contribution: 132,120 GBP

    Organic TFTs have been developed for a broad range of display and integrated circuit applications on flexible, plastic substrates. For display applications organic TFTs have reached an advanced stage of industrialisation. Our industrial partner, Plastic Logic, manufactures flexible displays comprising more than 1 million OTFTs on a plastic substrate for applications in lightweight, robust electronic readers. In contrast to displays circuit applications of OTFTs have been much harder to realize. This is mainly due to the poor switching performance of printed OTFTs arising as a consequence of the relatively low mobility of organic semiconductors (which in spite of dramatic improvements in recent years is still "only" on the order of 1 cm2/Vs) and the low resolution of common graphic arts based printing techniques. Our approach to overcome the critical performance issues of printed electronics has been to develop a high-resolution printing-based manufacturing process for OTFTs (self aligned printing (SAP) / self-aligned gate (SAG) technology) (Noh et al., Nature Nanotechnology 2, 784 (2007)), which allows fabrication of TFTs with submicrometer channel lengths and low parasitic gate capacitance by simple inkjet printing techniques. In the EPSRC/CIKC funded PRIME project we developed this technology into a controlled technology platform for fabrication of integrated circuits with typically 100 TFTs. The number of TFTs is limited by our university fabrication and testing infrastructure. The PRIME project had two main technological objectives: (a) to establish manufacturability of the previously developed SAP/SAG process for downscaling printed organic TFTs and (b) to integrate both p-type and n-type organic semiconductors into such downscaled, printed TFTs to allow fabrication of high yielding, low power printed CMOS circuits. The objective of the proposed follow-on funding project is to commercialize this technology platform in a specific integrated circuit application that is compatible with the limited integration level that we can realistically achieve with our current fabrication infrastructure (about 100 elements).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L017709/1
    Funder Contribution: 2,281,220 GBP

    This project seeks to develop processes and resources towards sustainable and inexpensive high quality transparent conducting oxide (TCO) films (and printed tracks) on float glass, plastics and steel. In particular replacement materials for Indium Tin Oxide (ITO) and F-doped Tin Oxide (FTO). These materials are used in low-e window coatings (>£5B pa), computers, phones and PV devices. The current electronics market alone is worth in excess of £0.9 Trillion and every tablet PC uses ca 3g of tin. Indium is listed as a critical element- available in limited amounts often in unstable geopolitical areas. Tin metal has had the biggest rise in price of any metal consecutively in the last four years (valued at >£30K per ton) and indium is seen as one of the most difficult to source elements. In this project we will develop sustainable upscaled routes to TCO materials from precursors containing earth abundant elements (titanium, aluminium, zinc) with equivalent or better figures of merit to existing TCOs. Our method uses Aerosol assisted (AA) CVD to develop large scale coatings and developing new manufacturing approach to printed TCOs using highly uniform nanoparticle dispersions. AACVD has not been upscaled- although the related Atmospheric pressure (AP) CVD is widely used industrially. APCVD was developed in the UK (Pilkington now NSG) for commercial window coating methods- and in the UK glass industry supports >5000 jobs in the supply chain. Our challenge is to take our known chemistry and develop the underpinning science to demonstrate scale up routes to large area coatings. This will include pilot scale AACVD, nanoparticle dispersions and inks. Common precursor sets will be utilized in all the techniques. Our focus will be to ensure that the UK maintains a world-leading capability in the manufacturing of and with sustainable TCOs. This will be achieved by delivering two new scale up pathways one based on AACVD- for large area coatings and inks and dispersions for automotive and PC use. We will use known and sustainable metal containing precursors to deposit TCOs that do not involve rare elements (e.g. based on Ti, Zn, Al). Key issues will be (1) taking the existing aerosol assisted chemical vapour deposition (AACVD) process from small lab scale to a large pilot lab scale reactor (TRL3) and (2) developing a new approach to TCOs from transparent nanoparticle dispersions synthesized in a continuous hydrothermal flow systems (CHFS) reactor using an existing EPSRC funded pilot plant process (kg/h scale). Nano-dispersions will be formulated for use by the rest of the team, in jet and screen printing, advanced microwave processing and TCO application testing. Industry partners will provide engineering support, guidance on the aerosol transport issues, scale up and dynamic coating trials (Pilkington now NSG), jet and screen printing on glass (Xaar, Akzo Nobel, CPI) and use the TCO targets for Magnetron Sputtering of thin films on plastics (Teer Coatings). The two strands will be overseen by Life-cycle modelling and cost benefit analyses to take a holistic approach to the considerations of energy, materials consumption and waste and, in consultation with key stakeholders and policy makers, identify best approaches to making improvement or changes, e.g. accounting for environmental legislation in nanomaterials, waste disposal or recyclability of photovoltaics. We believe there is a real synergy of having two strands as they are linked by common scale up manufacturing issues and use similar process chemistries and precursors.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015978/1
    Funder Contribution: 4,633,500 GBP

    Topic of centre: Assembly of Functional NanoMaterials and NanoDevices, the focus of this training centre, aims to make significant progress in developing new functional NanoScience and NanoTechnologies for impact in four major areas: Energy Materials, Sustainable NanoMaterials, Nano-Bio Technologies, and NanoElectronics/Photonics. Each of these connects to strong societal challenges, which can be unlocked by critical advances in nano-assembly. The synergistic overlap of the underlying nano-assembly knots all these areas together so they act to pull early-stage overarching developments in clear application directions. Harnessing a massive existing collaboration of >150 interdisciplinary academics and promoting new interactions across the University of Cambridge, we can translate nascent science into real innovation, through the endeavour and focus of the cohorts within this CDT. National Need: Most breakthrough nanoscience relies on scientists bridging disciplinary boundaries. In the UK approach to science training, most graduates selecting PhDs never leave the comfort of their original discipline. Producing a cadre of interdisciplinary nanoscientists is crucial for the UK to develop both the new academic directions and the industrial capabilities to capitalise on the ideas emerging from the fertile ground of Nanoscience. This CDT opens the way to achieve this so that PhD students move into new departments. Our numerous industrial partners strongly emphasise that such broadly-trained interdisciplinary acolytes are highly valuable across their businesses, acting as transformers and integrators of new knowledge, crucial for the UK. These will be trained people in high demand. Approach: The aim of this CDT in Nano is to attract a world-class team of postgraduates and build a high-calibre cohort of self-supporting young Nano scientists bridging our themed areas. The Nano CDT will operate as a distinct PhD nursery, with the entry co-housed and jointly mentored in the initial year of formal courses and project work. It is crucial to develop a programme that encourages young researchers to move outside their core disciplines, and that goes well beyond the fragmented graduate training normally experienced. The 1st year provides high-quality advanced-level training prior to final selection of preferred research projects. Four components are important: - learning additional skills in disciplines outside their 1st degree, including over 30 hands-on practicals in small groups, directly making and characterising nanomaterials and devices. - understanding the Enterprise landscape relating to Nano-Innovation, gaining confidence and know-how for spin-outs, partnering, and what is critical in building high-tech spin-off companies, - gaining specific knowledge of the nanoscience and application of self-assembly to NanoDevices and NanoMaterials, including nano-forces, nano-wetting, commercial nano processing, etc. - miniprojects spanning different disciplines to broaden students' experience and peer networks, aiding final PhD project selection. Three 2-3 month-long interdisciplinary mini-projects within different departments will be undertaken by each student. This coursework is examined leading to an MRes. Students will develop their own PhD topics during interactions with academics across the University and industrial mentors. Students express interest in a ranked list of top 3 projects, and are allocated approval to start building a case around a topic with the two supervisors involved. They are examined in a written proposal, and then a formal viva on the aims, methodologies and technical issues. To prevent the subsequent pressures of research draining the cohort dynamics, a range of joint activities are programmed in later years. Additional exposure includes industrial research reviews, a series of mandatory internal (student-led) conferences, leadership and team-building weekends, and research seminars.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K017144/1
    Funder Contribution: 6,883,330 GBP

    Graphene has many record properties. It is transparent like (or better than) plastic, but conducts heat and electricity better than any metal, it is an elastic thin film, behaves as an impermeable membrane, and it is chemically inert and stable. Thus it is ideal for the production of next generation transparent conductors. Thin and flexible graphene-based electronic components may be obtained and modularly integrated, and thin portable devices may be assembled and distributed. Graphene can withstand dramatic mechanical deformation, for instance it can be folded without breaking. Foldable devices can be imagined, together with a wealth of new form factors, with innovative concepts of integration and distribution. At present, the realisation of an electronic device (such as, e.g., a mobile phone) requires the assembly of a variety of components obtained by many technologies. Graphene, by including different properties within the same material, can offer the opportunity to build a comprehensive technological platform for the realisation of almost any device component, including transistors, batteries, optoelectronic components, photovoltaic cells, (photo)detectors, ultrafast lasers, bio- and physicochemical sensors, etc. Such a change in the paradigm of device manufacturing would revolutionise the global industry. UK will have the chance to re-acquire a prominent position within the global Information and Communication Technology industry, by exploiting the synergy of excellent researchers and manufacturers. Our vision is to take graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent (opto)electronics, with a manifold return for UK, in innovation and exploitation. Graphene has benefits both in terms of cost-advantage, and uniqueness of attributes and performance. It will enable cheap, energy autonomous and disposable devices and communication systems, integrated in transparent and flexible surfaces, with application to smart homes, industrial processes, environmental monitoring, personal healthcare and more. This will lead to ultimate device wearability, new user interfaces and novel interaction paradigms, with new opportunities in communication, gaming, media, social networking, sport and wellness. By enabling flexible (opto)electronics, graphene will allow the exploitation of the existing knowledge base and infrastructure of companies working on organic electronics (organic LEDs, conductive polymers, printable electronics), and a unique synergistic framework for collecting and underpinning many distributed technical competences. The strategic focus of the proposed Cambridge Graphene Centre will be in activities built around the central challenge of flexible and energy efficient (opto)electronics, for which graphene is a unique enabling platform. This will allow us to 1) grow and produce graphene by chemical vapour deposition and liquid phase exfoliation on large scale; 2) prepare and test inks, up to a controlled and closely monitored pilot line. The target is several litres per week of optimized solutions and inks, ready to be provided to present and future partners for testing in their plants; 3) design, test and produce a variety of flexible, antennas, detectors and RF devices based on graphene and related materials, covering all present and future wavelength ranges; 4) prototype and test flexible batteries and supercapacitors and package them for implementation in realistic devices. Our present and future industrial partners will be able to conduct pilot-phase research and device prototyping in this facility, before moving to larger scale testing in realistic industrial settings. Spin-off companies will be incubated, and start-ups will be able to contract their more fundamental work to this facility.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K01711X/1
    Funder Contribution: 2,957,290 GBP

    Graphene has many record properties. It is transparent like (or better than) plastic, but conducts heat and electricity better than any metal, it is an elastic thin film, behaves as an impermeable membrane, and it is chemically inert and stable. Thus it is ideal for the production of next generation transparent conductors. Thin and flexible graphene-based electronic components may be obtained and modularly integrated, and thin portable devices may be assembled and distributed. Graphene can withstand dramatic mechanical deformation, for instance it can be folded without breaking. Foldable devices can be imagined, together with a wealth of new form factors, with innovative concepts of integration and distribution. At present, the realisation of an electronic device (such as, e.g., a mobile phone) requires the assembly of a variety of components obtained by many technologies. Graphene, by including different properties within the same material, can offer the opportunity to build a comprehensive technological platform for the realisation of almost any device component, including transistors, batteries, optoelectronic components, photovoltaic cells, (photo)detectors, ultrafast lasers, bio- and physico-chemical sensors, etc. Such change in the paradigm of device manufacturing would revolutionise the global industry. UK will have the chance to re-acquire a prominent position within the global Information and Communication Technology industry, by exploiting the synergy of excellent researchers and manufacturers. We propose a programme of innovative and adventurous research, with an emphasis on applications, uniquely placed to translate this vision into reality. Our research consortium, led by engineers, brings together a diverse team with world-leading expertise in graphene, carbon electronics, antennas, wearable communications, batteries and supercapacitors. We have strong alignment with industry needs and engage as project partners potential users. We will complement and wish to engage with other components of the graphene global research and technology hub, and other relevant initiatives. The present and future links will allow UK to significantly leverage any investment in our consortium and will benefit UK plc. The programme consists of related activities built around the central challenge of flexible and energy efficient (opto)electronics, for which graphene is a unique enabling platform. This will be achieved through four main themes. T1: growth, transfer and printing; T2: energy; T3: connectivity; T4: detectors. The final aim is to develop "graphene-augmented" smart integrated devices on flexible/transparent substrates, with the necessary energy storage capability to work autonomously and wireless connected. Our vision is to take graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent (opto)electronics, with a manifold return for UK, in innovation and exploitation. Graphene has benefits both in terms of cost-advantage, and uniqueness of attributes and performance. It will enable cheap, energy autonomous and disposable devices and communication systems, integrated in transparent and flexible surfaces, with application to smart homes, industrial processes, environmental monitoring, personal healthcare and more. This will lead to ultimate device wearability, new user interfaces and novel interaction paradigms, with new opportunities in communication, gaming, media, social networking, sport and wellness. By enabling flexible (opto)electronics, graphene will allow the exploitation of the existing knowledge base and infrastructure of companies working on organic electronics (organic LEDs, conductive polymers, printable electronics), and a unique synergistic framework for collecting and underpinning many distributed technical competences.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.