
DRAX POWER LIMITED
DRAX POWER LIMITED
Funder
11 Projects, page 1 of 3
assignment_turned_in Project2010 - 2014Partners:University of Leeds, Drax (United Kingdom), Alstom (United Kingdom), RWE (United Kingdom), University of Leeds +4 partnersUniversity of Leeds,Drax (United Kingdom),Alstom (United Kingdom),RWE (United Kingdom),University of Leeds,Alstom Ltd (UK),Alstom Ltd (UK),DRAX POWER LIMITED,RWE npowerFunder: UK Research and Innovation Project Code: EP/H048839/1Funder Contribution: 600,019 GBPBiomass - vegetation such as trees, grasses or straws - is resurging as a source of sustainable, environmentally-friendly fuel for use in power stations. This is because, when grown in a sustainable way, it is almost carbon-neutral - the carbon-doxide emitted when the biomass is burned, is readsorbed from the atmosphere during the photosynthesis of the next crop of biomass. Consequently, there is a great deal of interest in using biomass in coal-fired power stations by substituting a portion of the coal. Today, many power-stations in the UK have adopted this co-firing approach to reduce their carbon (dioxide) emissions. This is a good strategy since the biomass is burned in the very large coal power stations which have a higher efficiency than the small systems needed if the same amount of biomass was to be burned alone. However, in the power stations the coal is crushed to a fine powder in huge mills before being blown into the burners in the boiler. Most biomass does not grind or crush very well because it is springy and fibrous. Consequently, when power generators attempt to powder the biomass in the coal mills it tends to form a mat on the bottom of the mill. This has limited the amount of biomass which can be processed in the mills and hence limited the amount of biomass used in the power-stations, and hence limited the carbon savings from co-firing biomass. Some power stations have invested millions of pounds to install separate, different types of mills for cutting biomass so that they can use more - for example, up to 20% by weight is used in Fiddlers Ferry power station. Another strategy is a process known as torrefaction in which the biomass is pre-treated so that it becomes more brittle and easier to crush. This process involves heating biomass to a moderate temperature (~280 C) in the absence of air. It is similar to the process used to roast coffee beans and so is sometimes refered to as roasting biomass. During torrefaction some material is lost from the biomass - particularly moisture and some gases and volatile substances - but the material which is left, the residue, still contains typically 80% of the heating value of the original biomass, and is transformed into a harder, darker fuel, which is much easier to crush. This process is attracting a great deal of interest from all sectors involved in the bioenergy chain: - growers see this is a way of adding value to the biomass they grow and reducing transportation costs (since the fuel is dry and has a greater energy per unit volume); power-generators see this as a simpler fuel to handle in the power stations; and there is also interest in using torrefied biomass as a fuel in other conversion processes, such as biomass gasification to liquid (transport) fuels (BTL). Furthermore, torrefied biomass does not go mouldy upon storage like raw biomass and so it becomes attractive for extending the supply window for using biomass. In order for torrefaction of biomass to happen on a large scale much information is needed in order to design safe, environmentally-friendly torrefiers. This research is aimed at providing much of this information and answering these questions: What are the explosion risks within torrefiers or mills using torrefied biomass? (Fine dust can result in explosions under certain concentrations, and knowledge of these concentrations is needed in order to incorporate adequate safety design features.) What would the effluents from the process (liquid and gas) be composed of? Can the gas and vapours produced provide the heat to drive the torrefaction? How would torrefied biomass burn in the power station? It also aims to develop a tool which engineers can use to help them design the torrefier itself, so that they know what temperature is needed, and how long the biomass needs to reside within the torrefier so that an optimum fuel is produced.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::82c889eb7e761e155094c56c4f713560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::82c889eb7e761e155094c56c4f713560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2022Partners:University of Strathclyde, Drax (United Kingdom), CountingLab Ltd, DRAX POWER LIMITED, Scottish and Southern Energy SSE plc +6 partnersUniversity of Strathclyde,Drax (United Kingdom),CountingLab Ltd,DRAX POWER LIMITED,Scottish and Southern Energy SSE plc,Bellrock Technology (United Kingdom),Bellrock Technology,Scottish and Southern Energy (United Kingdom),CountingLab Ltd,University of Strathclyde,Scottish and Southern Energy SSE plcFunder: UK Research and Innovation Project Code: EP/S030131/1Funder Contribution: 703,091 GBPThe programme of research that constitutes AMIDiNe will devise analytics that link point measurement to whole system to address the increasingly problematic management of electrical load on distribution networks as the UK transitions to a low carbon energy system. Traditionally, distribution networks had no observability and power flowed from large generation plant to be consumed by customers in this 'last mile'. Now, and even more so in future, those customers are generators themselves and the large generators that once supplied them have been supplanted by intermittent renewables. This scenario has left the GB energy system in position where it is servicing smaller demands at a regional or national level but faces abrupt changes in the face of weather and group changes in load behaviour, therefore it needs to be more informed on the behaviour of distribution networks. The UK government's initiative to roll out Smart Meters across the UK by 2020 has the potential to illuminate the true nature of electricity demand at the distribution and below levels which could be used to inform network operation and planning. Increasing availability of Smart Meter data through the Data Communications Company has the potential to address this but only when placed within the context of analytical and physical models of the wider power system - unlike many recent 'Big Data' applications of machine learning, power systems applications encounter lower coverage of exemplars, feature well understood system relations but poorly understood behaviour in the face of uncertainty in established power system models. AMIDiNe sets out its analytics objectives in 3 interrelated areas, those of understanding how to incorporate analytics into existing network modelling strategies, how go from individual to group demand behavioural anticipation and the inverse problem: how to understand the constituent elements of demand aggregated to a common measurement point. Current research broadly involving Smart Metering focuses on speculative developments of future energy delivery networks and energy management strategies. Whether the objective is to provide customer analytics or automate domestic load control, the primary issue lies with understanding then acting on these data streams. Challenges that are presented by customer meter advance data include forecasting and prediction of consumption, classification or segmentation by customer behaviour group, disambiguating deferrable from non-deferrable loads and identifying changes in end use behaviour. Moving from a distribution network with enhanced visibility to augmenting an already 'smart' transmission system will need understanding of how lower resolution and possibly incomplete representations of the distribution network(s) can inform more efficient operation and planning for the transmission network in terms of control and generation capacity within the context of their existing models. Improving various distribution network functions such as distribution system state estimation, condition monitoring and service restoration is envisaged to utilise analytics to extrapolate from the current frequency of data, building on successful machine learning techniques already used in other domains. Strategic investment decisions for network infrastructure components can be made on the back of this improved information availability. These decisions could be deferred or brought forward in accordance with perceived threats to resilience posed by overloaded legacy plant in rural communities or in highly urbanised environments; similarly, operational challenges presented by renewable penetrations could be re-assessed according to their actual behaviour and its relation to network voltage and emergent protection configuration constraints.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::44a0ef31fb0d1b6d1132838330a44583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::44a0ef31fb0d1b6d1132838330a44583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2023Partners:IFEU, AEP POLYMERS SRL, Imperial, Fiberight Ltd., DRAX POWER LIMITED +8 partnersIFEU,AEP POLYMERS SRL,Imperial,Fiberight Ltd.,DRAX POWER LIMITED,TCKT,EW BIOTECH GMBH,Oakdene Hollins (United Kingdom),KNAUF INSULATION LIMITED,CPI,CELIGNIS LIMITED,Aberystwyth University,Novozymes (Denmark)Funder: European Commission Project Code: 837771Overall Budget: 12,860,700 EURFunder Contribution: 6,984,810 EURThis project aims to showcase, at demonstration scale, the feasibility of producing and valorising second generation sugars derived from municipal solid waste (MSW). This MSW is composed of either mixed domestic residual waste or waste rejected from sorting and recycling processes (MRF rejects) and contains significant quantities of paper/card (lignocellulosic) based materials. The sugar will be utilised in the production of three bio-based products; 1) a thermoset bioresin used in the binding of mineral-wool insulation; 2) purified lactic acid (LA) for the commodities market; and 3) poly-lactic acid (PLA) and PLA/Fibre composite materials to be used in non-food contact applications within the fast moving consumer goods (FMCG), packaging, furnishings and construction sectors. The vision is to create a paradigm shift in industrial biotechnology products by establishing a novel approach based on the efficient use of low value mixed waste and the conversion of this material into value-added products. This project, titled ‘Value Added Materials from Organic waste Sugars’ (VAMOS) aims to produce competitive, sustainable, affordable and high-performance bio-based materials from low-value residual waste sugars.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7cc2870fe21bc369257f7c8051cb5701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7cc2870fe21bc369257f7c8051cb5701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2020 - 2024Partners:PIK, SAPPI NETHERLANDS SERVICES B.V., THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE, CARBON MARKET WATCH, LG +12 partnersPIK,SAPPI NETHERLANDS SERVICES B.V.,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,CARBON MARKET WATCH,LG,ST1 OY,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,Imperial,ETHZ,DRAX POWER LIMITED,UOXF,INSAT,ETA,University of Groningen,BELLONA EUROPA AISBL,STOCKHOLM EXERGI AB,NIVAFunder: European Commission Project Code: 869192Overall Budget: 5,817,840 EURFunder Contribution: 5,817,840 EURThe quantitative potential, effectiveness and impacts of negative emission technologies and practices (NETPs), particularly taking into account relevant disciplines such as sustainability, socio-political and socio-economic sciences, are not so well understood. Based on a multi-discipline approach, with world-leading experts that can show proven track records in technological, economic and socio-political disciplines, NEGEM will go beyond the perspectives of climate physics and climate economics currently providing the basis for climate scenario modelling. The novel approach of NEGEM is the focus on a real-world perspective, where the theoretical potential of NETPs will be filtered through a range of key performance indicators relevant to biogeochemical cycles, ecosystems and planetary boundaries, resource economies, societal dimensions, social acceptability, technological opportunities and constraints, multi-level governance, and the sustainability transition. Through this, NEGEM will address to what extent NETPs are required to achieve climate neutrality and how their associated technical, economic and socio-political impacts potentially limit their contribution. The result is a comprehensive analysis of the realistic, sustainably deployable potential of NETPs supporting EU’s endeavours to implement the Paris Agreement within the frames of relevant UN Sustainable Development Goals. The NEGEM analysis will feed into a comprehensive framework with guidance on how to create, select, analyse and disseminate pathways with NETPs. This framework will be used to identify a set of pathways to achieve climate neutrality, which helps lay the basis for the medium-to-long term vision needed to support EU’s endeavours to implement the PA within the context of relevant SDGs. NEGEM will dedicate specific efforts to reaching out to key stakeholders, in particular to policymakers at national and EU levels, but also to key international stakeholders, including developing countries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c15793bdf380dc150526df8abb3be85f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c15793bdf380dc150526df8abb3be85f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2017Partners:RES, NEA, The University of Manchester, Renewable Energy Association, DRAX POWER LIMITED +19 partnersRES,NEA,The University of Manchester,Renewable Energy Association,DRAX POWER LIMITED,Technological Institute Denmark,PROGRESSIVE ENERGY LIMITED,University of Manchester,REA,Renewable Energy Systems (United Kingdom),Sustainable Energy Ltd,Drax (United Kingdom),University of Salford,Progressive Energy (United Kingdom),Veolia (United Kingdom),BIOMASS Energy Centre,Biogas Hochreiter UK,Dalkia,North Energy Associates,Dalkia,Danish Technological Institute,Biogas Hochreiter UK,Sustainable Energy Ltd,BIOMASS Energy CentreFunder: UK Research and Innovation Project Code: EP/J017302/1Funder Contribution: 3,567,380 GBPBioenergy provides a significant proportion of the UK's low carbon energy supply for heat, transport fuel and electricity. There is scope for bioenergy to provide much higher levels of low carbon energy in future, but this requires appropriate development of key enabling technologies and strategic management to make the best use of the valuable, but finite, biomass resource. It must also be acknowledged that there have been significant concerns raised about the long term sustainability of bioenergy systems, including the wider social and economic impacts of biomass production. This project will create a Supergen Bioenergy hub for the UK which will bring together industry, academia and other stakeholders to focus on the research and knowledge challenges associated with increasing the contribution of UK bioenergy to meet strategic environmental targets in a coherent, sustainable and cost-effective manner. It will do this by taking a "whole systems" approach to bioenergy, so that we focus on the benefits that new technologies can bring within the context of the whole production and utilisation chain. In order to ensure focused research with rapid dissemination and deployment this will be done in close collaboration with industrial partners and other stakeholders, including government agencies. The hub will also take an expressly interdisciplinary approach to bioenergy, ensuring that we address important issues, such as the impacts of land-use change not just as scientific quantification exercises, but taking due account of the social and economic impacts. The hub will carry out leading edge research to address the engineering challenges associated with bioenergy deployment, with a particular focus on enabling flexible energy vectors. Therefore we will carry out core research to address existing problems, for example increasing scientific understanding of biomass combustion to improve environmental emissions and developing torrefaction (heating the feedstock), which could improve the logistics (and therefore costs) of using biomass. However, we will also work on more strategic, long term options; using academic expertise to help industry resolve the engineering problems experienced to date with some advanced technologies like gasification and assessing the prospects for biomass-derived synthetic natural gas as a low carbon alternative to diminishing natural gas supplies and developing new technologies to produce more sustainable transport fuels from biomass. The project will progress many different bioenergy options for the UK, which have many different costs and benefits. Therefore we will particularly focus on evaluating the ecological, economic and social aspects of the bioenergy chains being developed. That will allow us to provide appropriate scientific evidence and information to government and other stakeholders to facilitate development of the most sustainable bioenergy systems for the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::161875f5f56536ad09558da2269b17b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::161875f5f56536ad09558da2269b17b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right