Powered by OpenAIRE graph
Found an issue? Give us feedback

CORVUS ENERGY AS

CORVUS ENERGY AS

9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101137815
    Funder Contribution: 7,024,570 EUR

    Batteries have been identified as an important technology to guide the clean-energy transition. Its presence in the automotive and energy storage industry is well-established and forecasts show its incoming market uptake. However, the current BMS of FLBs lack interoperability features, resulting in a time-consuming, expensive, and non-standardized reconfiguration process for SLB adaptation. These drawbacks complicate FLB repurposing for SLB applications, like ESS. The BIG LEAP project focuses on developing solutions for the SLBs BMS and its reconfiguration process. Technology breakthroughs will be made in its BMS, as a new three-layer architecture will be designed to ensure interoperability, safety, and reliability. It will be complemented with an adaptable ESS design to ensure BMS integration and expand the SLB's potential applications. Additionally, the BIG LEAP project intends to optimize the battery reconfiguration process by making it cost-effective, faster, and standardized. The methodology for the development of these innovations includes the collection of EV, maritime E-Vessel, and ESS batteries that will be dismantled and the data collected will serve as the basis for the BMS architecture development. It will contain adaptable SoX algorithms for accurate battery measurement, a DT for real-time monitoring, and a standardization roadmap. The new BMS will be integrated into the batteries, alongside the ESS and will be tested in three demo sites. Two physical demos will be in Paris and Prague, and a virtual demo will be in Morocco. They aim to validate the novel BMS and ESS, proving their optimization and interoperability. The BIG LEAP innovation includes a multidisciplinary consortium, a strong business case, and an Environmental Impact assessment. All with the intention of accelerating its market uptake with a cost-effective solution, positively impacting the European economy through the battery value chain and tracing its sustainable benefits.

    more_vert
  • Funder: European Commission Project Code: 101096324
    Overall Budget: 11,284,800 EURFunder Contribution: 7,870,270 EUR

    NEMOSHIP ambition is to contribute to the European Partnership “Zero Emission Waterborne Transport (ZEWT)” objectives by providing new deployable technological solutions needed for all main types of waterborne transport to reach a “net zero emission” by 2050. To reach this goal, NEMOSHIP will: - develop (i) a modular and standardised battery energy storage solution enabling to exploit heterogeneous storage units and (ii) a cloud-based digital platform enabling a data-driven optimal and safe exploitation, - demonstrate these innovations at TRL 7 maturity for hybrid ships and their adaptability for full-electric ships thanks to: (i) a retrofitted hybrid offshore vessel (hybrid diesel/electric after NEMOSHIP BESS installation), (ii) a newly designed hybrid cruise vessel (LNG/electric propulsion) and (iii) a semi-virtual demonstration for two additional full-electric vessels such as ferries and short-sea shipping. All results will be built upon a treasure chest of 18 years of ESS operation data. Thanks to a very ambitious exploitation plan, accompanied by very large dissemination actions, the NEMOSHIP consortium estimates that these innovations will reach the following impacts by 2030: (i) electrification of about 7% of the EU fleet; (ii) generate a potential revenue of €300M thanks to the sales of the NEMOSHIP products and services; (iii) reduce EU maritime GHG emissions by 30% compared to business as usual (BAU) scenario; and (iv) create at least 260 direct jobs (over 1000 indirect). The NEMOSHIP consortium is composed of 11 partners (3 RTO, 1 SME, 7 large companies) and covers the whole value chain, from research-oriented partners and dissemination and exploitation specialists to software developers, energy system designers, integration partners, naval architects and end-users.

    more_vert
  • Funder: European Commission Project Code: 101138694
    Overall Budget: 11,334,100 EURFunder Contribution: 8,498,000 EUR

    The shipping industry is responsible for around 3% of global greenhouse gas emissions, and this is expected to increase as global trade and shipping activity continues to grow. As such, reducing emissions from shipping is an important part of global efforts to tackle climate change. In recent years, policies and legislation, mainly focusing on environmental sustainability, have pushed international shipping toward the process of its decarbonization. Regulatory bodies are pressing on the maritime world by adopting ambitious targets and by introducing a number of initiatives that will facilitate the transition to a sustainable future, including the International Maritime Organization's strategy to reduce greenhouse gas emissions from shipping, which aims to halve emissions from the sector by 2050 compared to 2008 levels. To this end, BlueBARGE will design, develop and demonstrate an optimum power-barge solution to mainly support offshore power supply to moored and anchored vessels, limiting local polluting emissions and global GHG footprint in a life cycle perspective, following a modular, scalable, adaptable and flexible design approach which will facilitate its commercialisation by 2030. The proposed power-barge solution will consider different alternatives as containerised power supply modules in a variety of configurations, where battery modules will serve as basis due to their high energy efficiency and readiness level, and other considered modules including hydrogen fuel cells and hydrogen generators. The project will address electrical integration issues, interfacing challenges of the barge with ships, ports and local grid, operational safety and regulatory compliance aspects, delivering a high-readiness and complete “power bunkering” solution. Overall, the BlueBARGE project’s full integrated system aims at contributing to the shift of the maritime industry towards the goals of electrification and decarbonisation at an EU and international level.

    more_vert
  • Funder: European Commission Project Code: 101138466
    Overall Budget: 7,511,270 EURFunder Contribution: 7,511,270 EUR

    Through a holistic approach, APOLO aims to tackle the challenges of power conversion from ammonia and develop an efficient and flexible ammonia cracking technology. This technology will be coupled with fuel cells and engines to achieve complete decarbonization of the maritime sector. As the main objective of the call is to demonstrate scalability beyond 3MW, the consortium will focus on showcasing the following demonstration units: i) A 125kW power conversion system that utilizes an ammonia cracker coupled with a PEM fuel cell system, achieving an overall system efficiency of 51% to 54%. The ammonia cracker will be customized to work with different pressure conditions and efficiency levels of PEM fuel cells. A comparison of efficiency levels will be conducted to evaluate the flexibility of the cracking system for all types of PEM fuel cells. ii) A 125kW partial ammonia cracker coupled with a 4-stroke engine, exhibiting an overall system efficiency above 45% APOLO is dedicated to minimizing the ecological footprint of transportation and energy, focusing on the maritime sector. To achieve this, we're actively developing innovative power conversion technologies such as cracker, fuel cell, and engine, and utilizing life cycle assessment (LCA) at various stages of product development. The technologies developed in APOLO are capable of targeting the first 30,000 ships in the market. Initially, the focus will be on vessels with 1 to 10 MW propulsion, with a significant number of them being around 3 MW in the next decade, as these are the first vessels relevant for ammonia-powered solutions.

    more_vert
  • Funder: European Commission Project Code: 101103997
    Overall Budget: 4,524,760 EURFunder Contribution: 4,524,760 EUR

    The current paradigm for battery testing is fragmented, time-consuming, and expensive. To fully characterize the performance of a battery cell requires a wide variety of both destructive and non-destructive tests, some of which can last for months or years. A new paradigm for battery testing is needed that takes full advantage of the latest advances in automation, data science, and modelling to bring battery development firmly into the digital era. DigiBatt will slingshot the European battery industry forward by developing novel digital approaches to extract more value from fewer tests. This will save valuable time and resources in a highly competitive industry. DigiBatt has assembled a consortium representing some of the world's leading battery research institutions, Gigafactories, and integrators, and will apply recent advances in autonomous battery testing, model-based simulation, and data-driven semantics to promote digital battery testing from TRL 4 to TRL 6.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.