Powered by OpenAIRE graph
Found an issue? Give us feedback

Mettler-Toledo Ltd

Mettler-Toledo Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/V029037/1
    Funder Contribution: 231,295 GBP

    The Centre for Rapid Online Analysis of Reactions (ROAR) at Imperial College London was established in 2018, with the award of a strategic equipment grant, and offers three main capabilities: High-throughput automated reaction platforms (robots) for screening reactions in parallel; in situ analytics for studying reaction progress (kinetics); and continuous flow reactors. The primary objective of ROAR is to provide access to capital equipment to support data-led research, including statistical approaches and data analysis associated with kinetic and high-throughput experimentation. During the first phase of its operation, ROAR has successfully established itself as a UK Flagship facility for the EPSRC Dial-a-Molecule Grand Challenge, and recognised by Imperial College as a Centre of Excellence. During this period ROAR has provided support to both Imperial College research groups and external users via open calls for proposals, fostering the growth of a user community that brings together over 85 groups from across the UK, including SME's, as well as global companies looking for the unique technological capabilities. In Phase II of the project, we wish to expand our activities to provide more training material for centres for doctoral training, and to support a new academic strategy at Imperial (DigiFAB Institute). The Resources Only award will allow us to expand our Operations Team, needed to implement workflows to improve sharing and accessibility of our equipment, by operating an equipment loan pool, and remote experiments. Over this period, we will also be assessing the user demand and feedback, to identify sustainable pathways forward.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T031263/1
    Funder Contribution: 690,497 GBP

    The use of autonomous robotic technologies is increasingly common for applications such as manufacturing, warehousing, and driverless vehicles. Automated robots have been used in chemistry research, too, but their widespread application is limited by the cost of the technology, and the need to build a bespoke automated version of each instrument that is required. We have developed a different approach by using mobile 'robotic chemists' that can work within a relatively standard laboratory, replicating the dexterous tasks that are carried out by human researchers. These robots can operate autonomously, 24/7, for extended periods, and they can therefore cover a much larger search space that would usually be possible. Also, the robots are driven by artificial intelligence (AI) and can search highly complex multidimensional experimental spaces, offering the potential to find revolutionary new materials. They can also carry out multiple separate experiments in parallel, if needed, to make optimal use of the available hardware in a highly cost-effective way. Our proposal is to establish a globally unique user facility in Liverpool that covers a broad range of materials research problems, allowing the discovery of useful products such as clean solar fuels catalysts, catalysts for plastics recycling, medicinal materials, and energy materials. This facility will allow researchers from both academic teams and from industry to access this new technology, which would otherwise be unavailable to them. Because the automation approach is modular, it will be possible for users to bring along specific equipment for their experiments to be 'dropped in' temporarily to create new workflows, greatly expanding the possible user base. The scope here is very broad because we have recently developed methods that give these robots have very high placement precision (+/- 0.12 mm): to a large extent, if a human can use the instrument, then so can the robot. We have identified, initially, a group of 25 academic users across 12 universities as 'day one' prospective users, as well as 7 industrial organisations with a specific interest in this technology. The potential user base, however, is far broader than this, and we will solicit applications for access throughout the project and beyond. This will be managed by a Strategic Management Team and an Operational Management Team that involves academics as well as permanent technical, administrative, and business development staff in the Materials Innovation Factory in Liverpool. Our overall objective is to build a sustainable AI-driven robotic facility that will provide a unique competitive advantage for the UK to discover new functional materials on a timescale that would be impossible using more conventional research methodology. In addition to focusing on excellent science, we will also consider diversity and career stage when prioritising access; for example, even a short, one-week visit to this autonomous facility might lead to 100's or even 1000's of new materials with associated property measurements, which might radically transform a PhD project or the change the direction of the research programme for an Early Career Researcher. This facility will therefore build the base of the UK research pyramid, as well as supporting activity that is already internationally leading, and our day-one user base includes researchers at all career stages.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023232/1
    Funder Contribution: 6,433,910 GBP

    Chemistry is a key underpinning science for solving many global problems. The ability to make any molecule or material, in any quantity needed in a prescribed timescale, and in a sustainable way, is important for the discovery and supply of new medicines to cure diseases, agrochemicals for better crop yields/protection, as well as new electronic and smart materials to improve our daily lives. Traditionally, synthetic chemistry is performed manually in conventional glassware. This approach is becoming increasingly inadequate to keep pace with the demand for greater accuracy and reproducibility of reactions, needed to support further discovery and development, including scaling up processes for manufacturing. The future of synthetic chemistry will require the wider adoption of automated (or autonomous) reaction platforms to perform reactions, with full capture of reaction conditions and outcomes. The data generated will be valuable for the development of better reactions and better predictive tools that will facilitate faster translation to industrial applications. The chemical and pharmaceutical industry is a significant provider of jobs and creator of wealth for the UK. Data from the Chemical Industries Association (CIA) shows that the chemical industry has a total turnover of £40B, adding £14.4B of value to the UK economy every year, employs 140,000 people directly, and supports a further 0.5M jobs. The sector is highly innovation-intensive: much of its annual spend of £4B on investment in capital and R&D is based on synthetic chemistry with many SME's and CRO's establishing novel markets in Science Parks across the UK regions, particularly in the South East and North West. The demand for graduate recruits by the Chemicals and Pharmaceutical industries for the period 2015-2025 is projected to be between 50,000-77,000, driven by an aging workforce creating significant volumes of replacement jobs, augmented by the need to address skills shortages in key enabling technologies, particularly automation and data skills. This CDT will provide a new generation of molecular scientists that are conversant with the practical skills, associated data science and digital technology to acquire, analyse and utilise large data sets in their daily work. This will be achieved by incorporating cross-disciplinary skills from engineering, as well as computing, statistics, and informatics into chemistry graduate programs, which are largely lacking from existing doctoral training in synthetic chemistry. Capitalising upon significant strategic infrastructural and capital investment on cutting edge technology at Imperial College London made in recent years, this CDT also attracts very significant inputs from industrial partners, as well as Centres of Excellence in the US and Europe, to deliver a unique multi-faceted training programme to improve the skills, employability and productivity of the graduates for future academic and industrial roles.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.