
Marks and Clerk LLP
Marks and Clerk LLP
6 Projects, page 1 of 2
assignment_turned_in Project2015 - 2017Partners:University of Strathclyde, UK Intellectual Property Office, SCOTTISH ENTERPRISE, Scottish Enterprise, Scottish Enterprise +5 partnersUniversity of Strathclyde,UK Intellectual Property Office,SCOTTISH ENTERPRISE,Scottish Enterprise,Scottish Enterprise,Marks and Clerk LLP,Department for Business, Energy and Industrial Strategy,Marks and Clerk LLP,UK Intellectual Property Office,University of StrathclydeFunder: UK Research and Innovation Project Code: EP/N005880/1Funder Contribution: 183,254 GBPThis project will investigate if crowdsourcing can be used to aggregate the content of disparate, open-data sources across the internet to determine which patents underpin commercial products, and organise and present these according to technical criteria in a visual "gallery" form appropriate for engineering design. Patents are frequently used to quantify levels of innovation associated with specific regions or companies. However despite the development of sophisticated data mining tools to support the analysis of over 50 million online patent records, little is known about which patents are actually "commercialized" and how they are embodied in commercial products. Because of this "patent informatics" has been inherently limited to the study of the records, rather than the use, of Intellectual Property (IP). This information gap inevitably reduces the accuracy of academic and commercial analysis that use patent data for applications such as innovation research, R&D fore-sighting, and IP portfolio valuations. Furthermore, the presentation of existing data maps is not in a form that is useful for engineering designers when conceptualising and embodying products: it is predominantly text-based (and often deliberately obfuscated) when more visual presentation with exemplars and appropriate technical taxonomic terms would greatly enhance utility when undertaking engineering design development. Crowdsourcing utilises large networks of open people to compete discrete tasks. Virtual tools are used to co-ordinate the distribution, payment and co-ordination of results, resulting in a labour market that is open 24/7 and a diverse workforce available to perform tasks quickly and cheaply. The distributed network of human workers provide on-line, "black-box", reasoning capabilities that could far exceed the capabilities of current AI technologies (i.e. genetic algorithms, neural-nets, case-based reasoning) in terms of flexibility and scope. This project proposes that crowdsourcing can be utilised to access open data sources such as user manuals, product labelling, court proceedings and company web pages to understand which patents are actively used in current products and how they have been embodied. With a more accurate representation of innovation commercialisation, technical metadata (labelling), and utilisation, we envisage patent searches not as a stage-gate check but as a revitalised source of design inspiration. Indeed, if crowdsourcing proves a cheap, scalable way of collating this information and applying appropriate taxonomic and visual engineering information, it could fundamentally alter the early phases of engineering design. To this end, the project will result in a visualization tool that can be used to both guide and inspire design conceptualisation and embodiment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2876d973dae557fb05a24af497f01c6e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2876d973dae557fb05a24af497f01c6e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:Cirevo, ICMEA, Mitsubishi Chemical UK, Energy Systems Catapult, Aston University +23 partnersCirevo,ICMEA,Mitsubishi Chemical UK,Energy Systems Catapult,Aston University,Stoli Chem,Wastewater Fuels,Eblana Photonics (Ireland),Energy Research Accelerator,Centre for Advanced Sustainable Energy,Aggregate Industries UK Limited,CSP Consulting,INOV8 Solutions Ltd,UK Water Industry Research,Coal Products Limited CPL,Surface Measurement Systems,Oxccu Tech Ltd,Drax (United Kingdom),Scottish and Southern Energy SSE plc,Waring Waste Ltd,Kew Technology,Halocycle Limited,PYROGENESYS LTD,Wase Ltd,Green Gas Catalysts Ltd,Dept of Agri, Env & Rural Affairs DAERA,Marks and Clerk LLP,CO2RE HubFunder: UK Research and Innovation Project Code: EP/Y035127/1Funder Contribution: 8,247,490 GBPThe centre will focus on negative emission technologies. Most climate policy specialists in the UK and around the world consider these will be essential to mitigate the worst impacts of climate change. At present the Supergen Bioenergy hub has 2 research projects on BECCS (focused on gasification), the Oxford based greenhouse removal hub works with 4 demonstrators (on biochar, peatlands, enhanced weathering and afforestation), all focused on academic research in UK institutes. This project will work with both Supergen and the GGR Hub (as well as the dmonstrators which have Nottingham and Aston leadership and participation) to expand the research to the currently neglected areas of engineered GGR solutions. The scale and level of activity often makes it difficult for individual universiteis to engage fully in the needs of the sector and so the CDT will address that by providing a wide pool of supervisors, facilities and disciplinary perspectives. No other centre currently does this for PhD students. No other centre has or is planned to address the future skills need with the huge anticipated expansion of this centre. The main technological themes are: Direct air capture and CO2 storage Direct air capture and CO2 utilization Biochar synthesis and utilisation Biomass to materials and chemicals CO2 Utilization Biomass to energy with carbon capture and storage
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2a0fd9ba251f12fc5a1f80845471419a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2a0fd9ba251f12fc5a1f80845471419a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2025 - 2033Partners:Nokia Bell Labs, Zimmer and Peacock Ltd, WaterScope Ltd, Aixtron (United Kingdom), ASTRAZENECA UK LIMITED +25 partnersNokia Bell Labs,Zimmer and Peacock Ltd,WaterScope Ltd,Aixtron (United Kingdom),ASTRAZENECA UK LIMITED,Vector Bioscience Cambridge,Greater Cambridge Partnership,Owlstone Medical,Marks and Clerk LLP,CAMBRIDGE NUCLEOMICS LTD,Iconal Technology Ltd,Blue Bear (United Kingdom),The Kavli Centre for Ethics,The Triple Chasm Company,Centre for Global Equality,GSK (Global),Cambridge Enterprise,Panaxium SAS,Friedrich-Alexander Univ of Erlangen FAU,NERC BRITISH ANTARCTIC SURVEY,Innotronic Solutions,Fluidic Analytics Ltd,UNIVERSITY OF CAMBRIDGE,Nosmotech Ltd,National Institute of Agricultural Botan,Silicon Microgravity Limited,Hitachi Cambridge Laboratory,Victoria and Albert Museum,Opto Biosystems,ioLight LtdFunder: UK Research and Innovation Project Code: EP/Y034880/1Funder Contribution: 7,058,200 GBPThe proposed EPSRC Centre for Doctoral Training in Sensor Technologies in an Uncertain World (Sensor CDT) will educate leaders who can effectively address the challenges of an increasingly uncertain, complex, and interconnected world. In recent years, society has faced a global pandemic, an energy crisis, and the consequences of war and the climate crisis. Sensor technologies play a vital role in addressing these challenges. They are essential tools for detecting changes in the world, protecting livelihoods, and improving well-being. Accurate sensory data are crucial for informing the public and enabling governments and policymakers to make evidence-based decisions. The new Sensor CDT is designed to train and inspire future sensor leaders with interdisciplinary and agile thinking skills to meet these challenges. Our students will learn to collaborate within and across cohorts, and co-create solutions with key stakeholders, including other scientists, industry partners, the third sector, and the public. The fully integrated 4-year Master + PhD program will be co-delivered by over 80 leading academics, over 25 industrial partners, and national research and policy agencies, and will cover the entire sensor value chain, from development over deployment and maintenance to end-of-life including middleware, and big data. Within the broader theme of uncertainty, we have identified three Focus Areas: I) Uncertainty in Sensory Data. According to the environmental sensor report published by UKRI in 2022, "data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology". Through bespoke training in measurement science, statistical methods and AI, our students will learn to determine data quality and interpret imperfect, uncertain and constantly changing data. By acquiring hands-on design and prototyping skills and familiarising themselves with ubiquitous open technology platforms, they will learn how to construct more accurate and reliable sensors. II) Sensors in an Uncertain World. Environmental, economic and social uncertainties disproportionately impact low- and mid-income countries. Through collaboration with academic partners and policy agencies, the students will explore the impact of these interconnected uncertainties and pathways through which they can be mitigated by deploying low-cost sensor technologies. III) Uncertainty in Industry. UK industries deal with uncertainties in supply chains, variable process conditions and feedstocks, and they are subject to changing regulatory guidelines. Sensor data are critical to minimise the effect of such uncertainties on the quality of products and services. Through the provision of training in technical skills, systems thinking, leadership, and project management, our students will learn to innovate on rapidly changing timelines, and to work increasingly in collaboration and synergy with stakeholders in commerce and the public. Whilst prevention of future disasters is important, we recognise an increasing need to create resilience in a world facing rapid, often irreversible, change. Solutions must be co-created with society. The CDT will equip students with the confidence to collaborate across a range of fields, including arts and social sciences, skills that cannot be acquired in traditional, single student / single discipline PhD programmes. Finally, our programme will address a skills gap identified by UK industry and academia, who report a growing problem in recruiting suitably qualified candidates with the skills, disciplinary breadth and leadership qualities needed to drive innovation in the sensor field. In the UK alone, the sensor market contributes to ~£6bn in exports, underpins ~70,000 jobs, and connects to a global market estimated to reach £500bn in 2032 (Sensors KTN). Providing the skilled talent for the UK to succeed in this rapidly growing and competitive sector is a crucial goal of our programme.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::19e9a7fc5ee80d072aecb7ca5d57929d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::19e9a7fc5ee80d072aecb7ca5d57929d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024Partners:Hybrid Catalysis (Netherlands), University of Leuven, Eastman Chemical Ltd (inc), James Hutton Institute, University of Leuven +42 partnersHybrid Catalysis (Netherlands),University of Leuven,Eastman Chemical Ltd (inc),James Hutton Institute,University of Leuven,Marks and Clerk LLP,Eastman Chemical Company (United States),University of Rome Tor Vergata,University of Washington,University of Virginia,DSM Innovative Synthesis B. V.,Bayer AG,Ineos (United Kingdom),Netherlands Institute for Catalysis Research,Dr. Reddy's Laboratories (United Kingdom),Royal Netherlands Academy Arts Sci KNAW,Leipzig University,Diamond Light Source,Marks and Clerk LLP,Sasol Technology Research Laboratory,King Abdullah University of Sc and Tech,King Abdullah University of Science and Technology,Hybrid Catalysis (Netherlands),UVA,University of St Andrews,University of St Andrews,TUM,TU/e,Sasol Technology Research Laboratory,RWTH,James Hutton Institute,Bayer (Germany),Dr Reddy's Laboratories UK Ltd,INEOS TECHNOLOGIES LTD,THE JAMES HUTTON INSTITUTE,Leibniz Institute for Catalysis,UH,Leibniz-Institut f³r Katalyse,Leibniz Institute for Catalysis,Saudi Arabia Basic Industries (Saudi Arabia),INEOS Technologies UK,KU Leuven,SABIC (Saudi Basic Industries Corp),Diamond Light Source,Netherlands Institute for Catalysis Rese,Eindhoven University of Technology,Royal Netherlands Academy of Arts and SciencesFunder: UK Research and Innovation Project Code: EP/L016419/1Funder Contribution: 4,437,580 GBPThe future sustainable production of bulk and fine chemicals is an ever-increasing global challenge that requires a transformative scientific approach. We must develop new ways of efficiently exploiting valuable fossil-fuel resources and tools to exploit renewable resources such as CO2 and lignin. Catalytic methods, the heart of this CDT, are key to these transformations, offering the single most powerful and broadly applied technology for the reduction of energy demand, cost, environmental impact and toxicity. This CDT will drive forward a sustainable and resource-rich culture. This CDT in Critical Resource Catalysis (CRITICAT) combines the catalysis research collective of St. Andrews, Edinburgh, and Heriot-Watt Universities to create a new and unique opportunity in PhD training and research. CRITICAT will allow 80+ bright minds to be challenged in a comprehensive and state-of-the-art PhD training regime in the broad remit of catalytic science, transforming them into future scientific researchers, business leaders, entrepreneurs, and policy makers. These will be people who make a difference in a technologically-led society. Our critical mass in critical resource catalysis will accelerate training, discovery, understanding, and exploitation within catalytic chemistry. We will focus our efforts on the future of catalysis, driving new advances for environmentally sustainable economic growth and underpinning current growth in the UK chemicals sector. The economic impact in this area is huge: in 2010, an EPSRC/RSC jointly commissioned independent report showed that the UK's "upstream" chemicals industry and "downstream" chemistry-using sector contributed a combined total of £258 billion in added value to the economy in 2007, equivalent to 21% of UK GDP, and supported over 6 million UK jobs. Sustained investment in PhD training within this area will provide the highest quality employees for this sector. The CRITICAT PhD students will be exposed to a unique training and research environment. Extensive taught courses (delivered by CRITICAT PIs and industrial collaborators) will offer fundamental insight into homogeneous, heterogeneous, industrial and biocatalysis coupled with engineering concepts and essential techniques to showcase cutting-edge catalysis. The CRITICAT partners will develop these core courses into a foundational textbook for graduate training across catalysis using critical resources as its cornerstone that will serve as a legacy for this programme. We will expand our pedagogical innovation to all PhD graduate students at our three partner universities, providing region-wide enhanced academic provision. Continuous growth and peer-to-peer learning throughout their research efforts will create graduates who are keen to continue learning. They will be equipped with business, management, entrepreneurial and communication skills synergistic with core science knowledge and research undertakings. In this way, we will ensure that our CRITICAT students will be able to innovate, think critically, and adapt to change in any technological career. We will prepare the next generation of scientists, managers and innovators for key roles in our future society. To support this broad developmental approach, industry and business leaders will contribute widely to CRITICAT. Industries will (i) provide scientific ideas and objectives, (ii) deliver new competencies through targeted courses ranging from entrepreneurship to intellectual property rights and (iii) provide laboratory placements to consolidate learning and exploit any scientific advances. Furthermore, our extensive collaboration with leading international academic institutions will engender PhD student mobility, expand impact and allow experiential learning. We will build on our existing public engagement frameworks to enable our students to deliver their research, impact and scientific understanding to a wide audience, exciting others and driving new scientific policy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5b35c63ac3edba24d90aaf1f0eea12c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5b35c63ac3edba24d90aaf1f0eea12c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:University of Cambridge, MedImmune Ltd, British Antarctic Survey, Marks and Clerk LLP, Silicon Microgravity Limited +55 partnersUniversity of Cambridge,MedImmune Ltd,British Antarctic Survey,Marks and Clerk LLP,Silicon Microgravity Limited,ioLight Ltd,NPL,Blue Bear (United Kingdom),Anglian Water Services Limited,Nokia Bell Labs,University of Cambridge,Hitachi Cambridge Laboratory,NERC BRITISH ANTARCTIC SURVEY,Blue Bear Systems Research Ltd,Synoptics Ltd,NERC British Antarctic Survey,Panaxium SAS,Cambridge Display Technology Ltd (CDT),Alphasense Ltd,Fluidic Analytics,Cambridgeshire County Council,Magna International,Alphasense Ltd,Teraview Ltd,Synoptics Ltd,ioLight Ltd,ARM Ltd,Magna International (United States),V&A,FAU,Iconal Technology Ltd,National Physical Laboratory,Marks and Clerk LLP,Nokia Bell Labs,Galvani Bioelectronics,MEDISIEVE,Friedrich-Alexander Univ of Erlangen FAU,Fluidic Analytics Ltd,Iconal Technology Ltd,Zimmer and Peacock,Hitachi Cambridge Laboratory,Panaxium SAS,Kirkstall Ltd,Galvani Bioelectronics,Cartezia,Cambridgeshire County Council,Kirkstall Ltd,Silicon Microgravity Limited,Friedrich-Alexander University,UNIVERSITY OF CAMBRIDGE,Anglian Water Services (United Kingdom),Teraview Ltd,CDT,ARM Ltd,TeraView (United Kingdom),ARM (United Kingdom),Cartezia,Zimmer and Peacock Ltd,AstraZeneca (United Kingdom),Victoria and Albert MuseumFunder: UK Research and Innovation Project Code: EP/S023046/1Funder Contribution: 5,807,470 GBPWe propose to build the EPSRC Centre for Doctoral Training in Sensor Technologies for a Healthy and Sustainable Future (Sensor CDT) on the foundations we have established with our current CDT (EPSRC CDT for Sensor Technologies and Applications, see http://cdt.sensors.cam.ac.uk). The bid falls squarely into EPSRC's strategic priority theme of New Science and Technology for Sensing, Imaging and Analysis. The sensor market already contributes an annual £6bn in exports to the UK economy, underpinning 73000 jobs and markets estimated at £120bn (source: KTN UK). Major growth is expected in this sector but at the same time there is a growing problem in recruiting suitably qualified candidates with the necessary breadth of skills and leadership qualities to address identified needs from UK industry and to drive sustainable innovation. We have created an integrated programme for high quality research students that treats sensing as an academic discipline in its own right and provides comprehensive training in sensor technologies all the way from the fundamental science of sensing, the networking and interpretation of sensory data, to end user application. In the new, evolved CDT, we will provide training for our CDT students on themes that are of direct relevance to a sustainable and healthy future society, whilst retaining a focus that delivers value to the UK economy and academia. The 4-year programme is strongly cross disciplinary and focuses on sustainable development goals and emphasises training in Responsible Innovation. One example of the latter is our objective to 'democratise sensor technologies': Our students will learn how to engage with the public during research, how to play a valuable part in public debate, and how to innovate technology that benefits society. Technical aspects will be taught in a bespoke training programme for the course, that includes lectures, practicals, lab rotations, industry secondments, and skills training on key underpinning technologies. To support this effort, we have created dedicated, state-of-the-art infrastructure for the CDT that includes laboratory, office, teaching, and social spaces, and we connect to the world leading infrastructure available in the participating departments and partner industries. The programme is designed to create strong identities both within and across CDT cohorts (horizontal and vertical integration) to maximise opportunities for peer-to-peer learning and leadership training through activities such as our unique sensor team challenges and the monthly Sensor Cafés, attended by representatives from academia, industry, government agencies, and the public. We will create a diverse and inclusive atmosphere where students feel confident and empowered to offer different opinions and experiences and which maximises creativity and innovation. We have attracted substantial interest and support (>£2.5M) from established industrial partners, but our new programme emphasises engagement also with UK start-ups and SMEs, who are particularly vulnerable in the current economic climate and who have expressed a need for researchers with the breadth and depth of skills the CDT provides (see letters of support). We recruit outstanding, prizewinning students from a diverse range of disciplines and the training programme connects more than 90 PIs across 15 departments and 40 industrial partners working together to address future societal needs with novel sensor technologies. Technology developers will benefit through connection with experts in middleware (e.g. sensor distribution and networking, data processing) and applications experts (e.g. life scientists, atmospheric scientists, etc.) and vice versa. This integrative character of the CDT will inspire innovations that transform capability in many disciplines of science and industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8018ee46acd55da2b015e798c7e24fab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8018ee46acd55da2b015e798c7e24fab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right