Powered by OpenAIRE graph
Found an issue? Give us feedback

Materials Modelling NPL

Country: United Kingdom

Materials Modelling NPL

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/F010524/1
    Funder Contribution: 1,056,310 GBP

    Quantum mechanics tells us how the world works at its most fundamental level. It predicts very strange behaviour that can typically only be observed when things are very cold and very small. It has an inbuilt element of chance, allows superpositions of two different states, and admits super-strong correlations between objects that would be nonsensical in our everyday world / entanglement . Despite this strange behaviour, quantum mechanics is the most successful theory that we have ever had / it predicts what will happen almost perfectly!Although the theory of quantum mechanics was invited at the beginning of the last century, quantum information science has only emerged in the last decades to consider what additional power and functionality can be realised by specifically harnessing quantum mechanical effects in the encoding, transmission and processing of information. Anticipated future technologies include quantum computers with tremendous computational power, quantum metrology which promises the most precise measurements possible, and quantum cryptography which is already being used in commercial communication systems, and offers perfect security.Single particles of light / photons / are excellent quantum bits or qubits, because they suffer from almost no noise. They also have great potential for application in future quantum technologies: schemes for all optical quantum computers are a leading contender, and photons are the obvious choice for both quantum communication and for quantum metrology schemes for measuring optical path lengths. There have already been a number of impressive proof-of-principle demonstrations of photonic information science.However, photonic quantum technologies have reached a roadblock: they are stuck in the research laboratory. All of the demonstrations to date have relied on imperfect, unscalable and bulky elements with single photons travelling in air. This is not suitable for future technologies. In addition there has been no integration of these critical components which will be essential for the realisation of scalable and practical technologies. This project aims to address these problems by developing single photon sources based on diamond nanocrystals, optical wires on optical chips, and superconducting single photon detectors, to the high performance levels required. It also aims to integrate all of these components on a single optical chip, and thus bring photonic quantum technologies out of the laboratory towards the marketplace.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G042586/1
    Funder Contribution: 669,327 GBP

    Submarine platforms form some of the most complex systems ever designed by man but, in line with the defence policy, there is ever increasing pressure to reduce procurement and ownership costs while maintaining capability. Composite materials have long been recognised as playing a key role in meeting these requirements by reducing time and cost of corrosion protection and repairs, as well as corrosion fatigue, while maintaining the vital stability margins and buoyancy requirements for the increasingly complex combat systems used on next generation submarines. Composites have the further advantage of multi-functionality, offering both structural and integral stealth properties management. In addition, composites mitigate the increasing cost and supply problems of complex high density castings such as Nickel Aluminium Bronze (NAB) long used in submarine applications due to its shock and corrosion resistant properties. Reinforced in its aims by the Defence Technology Strategy, the proposed research will provide the opportunity to understand and quantify, via fundamental science, the intermediate and high strain rate shock response of naval submarines composites in a complex submerged environment, whilst simultaneously seeking more optimised composite structures via novel fibre architectures and hybrid systems. Moreover, the proposed study will contribute to the MOD's specific requirement to both develop and sustain indigenous expertise in the area of submarine design as a key national capability. Finally, through understanding and modelling of material/structural and dynamic loading related issues at a range of scales, vital knowledge for effective assurance, test and repair of composite materials will be gained and embedded in certification procedures and Defence Standards. The use of proposed validated predictive modelling methodology is also expected to yield substantial savings during the design of new materials and structures through ever increasing progression to virtual testing and design and accordingly will greatly reduce the need for excessive large scale testing which are both expensive and environmentally unacceptable. In addition, this research is expected to provide the means for significant weight and life-long cost saving designs without compromising capability.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.