
EADS UK Ltd
EADS UK Ltd
13 Projects, page 1 of 3
assignment_turned_in Project2010 - 2011Partners:LU, EADS Airbus (to be replaced), EADS UK Ltd, University of LincolnLU,EADS Airbus (to be replaced),EADS UK Ltd,University of LincolnFunder: UK Research and Innovation Project Code: EP/H004351/2The scope of this project is to define, analyse and quantify the technologies which will enable the conversion of the kinetic energy of a landing aircraft, via a suitable electromechanical interface via transient energy storage into long term energy storage or the electrical grid network. Any technologies which are identified as having potential will be analysed not only in terms of power conversion efficiency, but also ranked against practical performance metrics such as weight, robustness, cost, and ultimately energy/carbon savings. The project will primarily be conducted in simulation, however the novel nature of the approach will require some basic experimentation to be conducted to support and confirm the simulation results.Power conversion in terms of this application is predicted to rely upon three basic technology areas to be researched:1. Electromechanical energy conversion of the aircraft motion into electrical energy, via linear or rotary machine.2. Power electronic energy conversion, transient energy storage, conditioning and distribution to long-term storage or the grid.3. Structural stress analysis of the viability of the runway and conversion components to the forces generated.There are two directions for the energy flow generated by the aircraft motion to be harvested. Firstly through a linear-type electromagnetic interface between the aircraft landing gear and the runway. Secondly, by a rotary electromechanical interface to energy storage on board the plane. In both cases, energy conversion, conditioning, energy storage and mechanical stress analysis is crucial. Although power regeneration into the aircraft has been dismissed in the past as being inefficient due to additional energy storage, it is proposed to analyse this method in the light of the developments associated with the More Electric Aircraft which has significant transient and long-term energy storage as part of its power systems structure. In addition, the next generation engines with embedded motor/generators on the engine shafts could possibly be used as a transient inertial energy storage when the engines are switched off. This is a prime example of the study not being restrained by contemporary thought, but looking forward to engage future technologies. This analysis will also draw upon experience by Prof. Stewart in electrically assisted aircraft braking performed in association with Messier-Bugatti, and More Electric Aircraft developments in collaboration with Airbus.The requirements of this project are to identify a family of potential solutions, and rank them according to a cost function based upon realistic performance metrics. In particular the strictures of 'real' aircraft operational constraints will be foremost in the performance analysis. The steering committee will be an important constituent of this approach, helping in the early stages to quantify this cost function.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4397b786455e38cc51bc387a86c52292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4397b786455e38cc51bc387a86c52292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2009Partners:University of Salford, Airbus (United Kingdom), EADS UK Ltd, EADS Airbus (to be replaced), University of SalfordUniversity of Salford,Airbus (United Kingdom),EADS UK Ltd,EADS Airbus (to be replaced),University of SalfordFunder: UK Research and Innovation Project Code: EP/H004351/1Funder Contribution: 199,224 GBPThe scope of this project is to define, analyse and quantify the technologies which will enable the conversion of the kinetic energy of a landing aircraft, via a suitable electromechanical interface via transient energy storage into long term energy storage or the electrical grid network. Any technologies which are identified as having potential will be analysed not only in terms of power conversion efficiency, but also ranked against practical performance metrics such as weight, robustness, cost, and ultimately energy/carbon savings. The project will primarily be conducted in simulation, however the novel nature of the approach will require some basic experimentation to be conducted to support and confirm the simulation results.Power conversion in terms of this application is predicted to rely upon three basic technology areas to be researched:1. Electromechanical energy conversion of the aircraft motion into electrical energy, via linear or rotary machine.2. Power electronic energy conversion, transient energy storage, conditioning and distribution to long-term storage or the grid.3. Structural stress analysis of the viability of the runway and conversion components to the forces generated.There are two directions for the energy flow generated by the aircraft motion to be harvested. Firstly through a linear-type electromagnetic interface between the aircraft landing gear and the runway. Secondly, by a rotary electromechanical interface to energy storage on board the plane. In both cases, energy conversion, conditioning, energy storage and mechanical stress analysis is crucial. Although power regeneration into the aircraft has been dismissed in the past as being inefficient due to additional energy storage, it is proposed to analyse this method in the light of the developments associated with the More Electric Aircraft which has significant transient and long-term energy storage as part of its power systems structure. In addition, the next generation engines with embedded motor/generators on the engine shafts could possibly be used as a transient inertial energy storage when the engines are switched off. This is a prime example of the study not being restrained by contemporary thought, but looking forward to engage future technologies. This analysis will also draw upon experience by Prof. Stewart in electrically assisted aircraft braking performed in association with Messier-Bugatti, and More Electric Aircraft developments in collaboration with Airbus.The requirements of this project are to identify a family of potential solutions, and rank them according to a cost function based upon realistic performance metrics. In particular the strictures of 'real' aircraft operational constraints will be foremost in the performance analysis. The steering committee will be an important constituent of this approach, helping in the early stages to quantify this cost function.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c2227eb60cb67ba050308a0de99ab1d5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c2227eb60cb67ba050308a0de99ab1d5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Airbus, Imperial College London, AIRBUS OPERATIONS LIMITED, EADS Airbus (to be replaced), Airbus (United Kingdom) +1 partnersAirbus,Imperial College London,AIRBUS OPERATIONS LIMITED,EADS Airbus (to be replaced),Airbus (United Kingdom),EADS UK LtdFunder: UK Research and Innovation Project Code: EP/G061556/1Funder Contribution: 342,187 GBPThe aim of this research is to investigate, in an interactive programme involving several mutually supportive computational approaches and paradigms, the feasibility of achieving sustained and economically worthwhile frictional-drag reduction at flight Reynolds numbers using cross-flow wall forcing. While the emphasis of the programme is on the fundamental turbulence physics and the prediction of its interaction with wall drag, in general, the programme is closely associated with an important civil aviation goal, namely the reduction in emissions per passenger km by 50% by 2020. The programme will combine studies involving direct numerical simulations and highly-resolved large eddy simulations with two approaches based on linearised streak modelling, one developed by Chernyshenko (Imperial College) and the other by Lockerby (Warwick). The general strategy is to use the full-resolution schemes to gain insight into the near-wall turbulence mechanisms associated with frictional drag, to generate calibration-related input into the linearised streak modelling and to investigate the validity of this modelling for a range of actuation parameters examined with the full-resolution approaches. The proposed research is fundamental in nature and complements well EPSRC's Active Aircraft programme, which is practically-oriented. The ultimate objective is to derive a prediction procedure, based on linearised streak modelling that allows the effect of different configurations of cross-flow wall forcing on drag at flight Reynolds numbers to be quantified. The programme is financially supported by EADS.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::40025440690480e408451981078880b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::40025440690480e408451981078880b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Airbus (United Kingdom), EADS UK Ltd, Airbus, University of Warwick, EADS Airbus (to be replaced) +2 partnersAirbus (United Kingdom),EADS UK Ltd,Airbus,University of Warwick,EADS Airbus (to be replaced),AIRBUS OPERATIONS LIMITED,University of WarwickFunder: UK Research and Innovation Project Code: EP/G060215/1Funder Contribution: 366,046 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f1c2b0dd82f9389180367363d72b693e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f1c2b0dd82f9389180367363d72b693e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2016Partners:Weir Oil & Gas, Tata Motors (United Kingdom), DHSC, Airbus (United Kingdom), University of Strathclyde +14 partnersWeir Oil & Gas,Tata Motors (United Kingdom),DHSC,Airbus (United Kingdom),University of Strathclyde,University of Strathclyde,United Kingdom Sport,PHE,Reaction Engines (United Kingdom),Exa Corporation (United States),Jaguar Land Rover (United Kingdom),REL,Weir Oil & Gas,EDF,Électricité de France (France),Dassault Systèmes (United States),EADS UK Ltd,Public Health England,UK SportFunder: UK Research and Innovation Project Code: EP/I011927/1Funder Contribution: 2,443,640 GBPThis research is about simulating and designing the engineering flow systems that will form a major part of the responses to health, transportation, energy and climate challenges that the world faces over the next 40 years.The United Nations estimates that by 2050 four billion people in 48 countries will lack sufficient water. But 97 percent of the water on the planet is saltwater, and much of the remaining freshwater is frozen in glaciers or the polar ice caps. If the glaciers in the polar regions continue to melt, as expected, the supply of freshwater may actually decrease: freshwater from the melting glaciers will mingle with saltwater in the oceans and become too salty to drink, and rising sea levels will contaminate freshwater sources along coastal regions. Technologies for large-scale purification of seawater or other contaminated water to make it drinkable are therefore urgently needed.At the same time, figures from the US Energy Information Administration project an average growth rate of 2.7 percent per year for transportation energy use in non-OECD countries to 2030 - this is 8 times higher than the projected rate for OECD countries. China's passenger transportation energy use per capita alone is projected to triple over this period, and India's to double. Improving the fuel efficiency of air and marine transport is a strategic priority for governments and companies around the world, and will have the added benefit of reducing emissions and helping address climate change. Micro and nano scale engineering presents an important opportunity to help meet these pressing challenges. For example, early indications are that membranes of carbon nanotubes have remarkable properties in filtering salt ions and other contaminants from water. Also, controlling the turbulent drag on aircraft and ship hulls, which is a major inefficiency in modern transportation, may be achievable by embedding micro systems and/or nano structures over the vehicle's surface.This cross-disciplinary research programme targets the unconventional fluid dynamics that is key to innovating in these visionary applications. The work is strongly supported by 9 external partners, ranging from large multinational companies to SMEs and public advisory bodies, and brings together established research groups from two major UK universities and a national research institute. We will deliver a comprehensive new technique for simulating mixed equilibrium/non-equilibrium fluid dynamics at the nano and micro scale, and deploy it on three important technical challenges that span the range of economic and societal impact, from energy to healthcare. These are drag reduction in aerospace, applications of super-hydrophobic surfaces to marine transport, and water desalination / purification. In this research we aim to:- accurately predict the performance of the proposed technologies;- optimise their design within realistic engineering parameters;- propose new designs which exploit flow behaviour at this scale for technological impact.The research partnership leading this Programme has flourished over 10 years into an international driver for understanding these kinds of thermodynamically non-equilibrium flows, attracting substantial joint funding and producing co-authored research publications. The partnership is poised to effect the step-change in non-equilibrium flow simulation capabilities that is needed to make new technologies at the micro and nano scale practicable, beyond any currently conceived.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::13cfcfa53ac3d9adcfe40b5a86b0817f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::13cfcfa53ac3d9adcfe40b5a86b0817f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right