
PhaseCraft Ltd.
PhaseCraft Ltd.
5 Projects, page 1 of 1
assignment_turned_in Project2021 - 2025Partners:Rahko Limited, University of Strathclyde, AWE, University of Strathclyde, NPL +2 partnersRahko Limited,University of Strathclyde,AWE,University of Strathclyde,NPL,River Lane Research,PhaseCraft Ltd.Funder: UK Research and Innovation Project Code: EP/T026715/2Funder Contribution: 140,062 GBPCCP-QC is a network linking computational scientists with quantum computing scientists and engineers, to develop some of the first useful applications of quantum computers. Quantum computing is promising fundamentally faster computation as part of broader quantum technology development that includes more secure communications, and more sensitive measurements and imaging. Our conventional computers, including those in mobile phones, modern cars, and powering the internet, are based on silicon semicoductor technology. After half a century of growth, silicon semiconductor computer chips have been at the limit of what they can do for the past decade. Faster computing requires more computers, which use more electricity and this growth is thus limited. Quantum computing uses a different logic, enabling much faster computing for some types of problems. The engineering challenges are formidable, and we are still at the stage equivalent to the first semiconductor chips in the early 1960s. Early quantum computers are already available: developing applications to suit the capabilities of this hardware is the next step, to enable us to take advantage of the opportunities they offer to speed up our computations. An important set of computational tasks in materials, chemistry, physics, biology, and engineering is developed by communities supported by collaborative computational projects (CCPs). CCP-QC will network across these CCPs and the quantum computing community, to enable the CCP communities to enhance their computations by using quantum computers. It will do this by organising joint meetings, holding training days to teach computational scientists about quantum computing, supporting small projects to develop proof-of-principle code and demonstrations on early quantum computing hardware, and providing an online information resource on early quantum computing applications. CCP-QC will interface with the new National Quantum Computing Centre, to be launched in April 2020 and based on the STFC Harwell campus in Oxfordshire. CCP-QC will enable quantum computing hardware providers to have their hardware tested with real problems of importance to the computational science communities. The outcomes of such tests can thus influence the development of quantum computing hardware, leading to faster development of useful applications that are adapted to extract the best advantage from the early quantum hardware. The simulations carried out by the CCP communities cover a wide range of important applications, from smart materials (e.g., better solar cells and batteries) to drug design (bio-molecular simulation). CCP-QC will thus contribute to the development of faster computational methods in many important applications with wide-ranging scientific, social and economic benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3dc8fdbc8ccfc6e94d9c4683c2281a5f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3dc8fdbc8ccfc6e94d9c4683c2281a5f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2024Partners:GTN Ltd, Google (United States), Google Inc, UCL, NPL +4 partnersGTN Ltd,Google (United States),Google Inc,UCL,NPL,GTN Ltd,National Physical Laboratory,PhaseCraft Ltd,PhaseCraft Ltd.Funder: UK Research and Innovation Project Code: EP/S005021/1Funder Contribution: 1,964,170 GBPNature, at it deepest level, is notoriously difficult to model, as quantum mechanical effects cause the size of the problems to grow exponentially. This poses major challenges in the accurate simulation of molecules and crystals, thus limiting the power of computers to drive major advances in the development of new materials (from batteries and solar cells to superconductors), new chemical processes (designing better catalysts) and new drugs (engineering molecules for desired biological and pharmacological effects). Each of these challenges can be addressed through tools we will help establish in this Prosperity Partnership. As Feyman observed, the best (and indeed only) way to accurately compute the behaviour of such quantum mechanical systems is to build a computer whose inner workings are fundamentally based on those same quantum mechanical principles. Such so-called 'quantum computers' require radically new hardware able to represent and maintain information in exotic quantum states involving superposition (where quantum bits can be 0 and 1) and entanglement. Major advances are being made world-wide using a variety of hardware platforms, and amongst the leading quantum processors today are those being developed at Google, based on superconducting circuits. In 2018, Google expects to announce a processor with 49 high-quality quantum bits - although this number may seem small compared to the billions of transistors in conventional processor chips, this 49-qubit processor will, we expect, demonstrate the ability to solve a computational problem beyond the capabilities of our most capable supercomputers. This first demonstration of quantum 'advantage' using a quantum processor chip, opens the door for a new research approach looking to characterise and harness the the capabilities of this new hardware and develop applications in the simulation and modeling of materials and molecules. The Partnership brings together the University of Bristol and UCL and their research groups with long-standing expertise in the theory of quantum computing and simulation, and Google, a world leader in the design and development of advanced quantum computing hardware based on superconducting qubits. Our goal is to develop new and improved algorithms, verification techniques and benchmarks for simulation of quantum systems on near-term quantum computers, which we will implement and demonstrate on Google's hardware. Such an industrial-academic collaboration would have been impossible a few years ago; now working together in this way is essential to efficiently address the main challenges in this area, as our ability to able to run and test problems on real quantum hardware will have a dramatic effect on the pace of quantum application development. In addition, the Partnership includes two UK startups developing quantum software and "quantum-inspired" software sphere, playing a strong role in the development of commercial applications of the results of this project. Through the Partnership, we will therefore build the foundation of a quantum software industry in the UK, with a specific focus on quantum simulation. Our programme is organised around a set of four main Challenges: - How can we optimise quantum simulation algorithms for imperfect quantum computers? - How do we test the behaviour of a quantum machine if it is classically un-simulatable? - What are the potential applications of quantum simulations in the medium term? - Can we quantify the computational complexity of problems and use this to improve algorithms? Each of these raises issues that are both fundamental and practical: the former involving the development of tools that can reframe these questions in a quantifiable way and the latter in in the formulation of explicit practical tests that can be implemented on current devices. In addressing these questions, we aim to develop a firm basis for the development of quantum software well-adapted to current architectures
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::23019df3038d9d3257ebbd883cfe7fec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::23019df3038d9d3257ebbd883cfe7fec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2021Partners:AWE, Durham University, River Lane Research, PhaseCraft Ltd., National Physical Laboratory +7 partnersAWE,Durham University,River Lane Research,PhaseCraft Ltd.,National Physical Laboratory,Durham University,NPL,Rahko Limited,Atomic Weapons Establishment,Riverlane,PhaseCraft Ltd,Rahko LimitedFunder: UK Research and Innovation Project Code: EP/T026715/1Funder Contribution: 163,420 GBPCCP-QC is a network linking computational scientists with quantum computing scientists and engineers, to develop some of the first useful applications of quantum computers. Quantum computing is promising fundamentally faster computation as part of broader quantum technology development that includes more secure communications, and more sensitive measurements and imaging. Our conventional computers, including those in mobile phones, modern cars, and powering the internet, are based on silicon semicoductor technology. After half a century of growth, silicon semiconductor computer chips have been at the limit of what they can do for the past decade. Faster computing requires more computers, which use more electricity and this growth is thus limited. Quantum computing uses a different logic, enabling much faster computing for some types of problems. The engineering challenges are formidable, and we are still at the stage equivalent to the first semiconductor chips in the early 1960s. Early quantum computers are already available: developing applications to suit the capabilities of this hardware is the next step, to enable us to take advantage of the opportunities they offer to speed up our computations. An important set of computational tasks in materials, chemistry, physics, biology, and engineering is developed by communities supported by collaborative computational projects (CCPs). CCP-QC will network across these CCPs and the quantum computing community, to enable the CCP communities to enhance their computations by using quantum computers. It will do this by organising joint meetings, holding training days to teach computational scientists about quantum computing, supporting small projects to develop proof-of-principle code and demonstrations on early quantum computing hardware, and providing an online information resource on early quantum computing applications. CCP-QC will interface with the new National Quantum Computing Centre, to be launched in April 2020 and based on the STFC Harwell campus in Oxfordshire. CCP-QC will enable quantum computing hardware providers to have their hardware tested with real problems of importance to the computational science communities. The outcomes of such tests can thus influence the development of quantum computing hardware, leading to faster development of useful applications that are adapted to extract the best advantage from the early quantum hardware. The simulations carried out by the CCP communities cover a wide range of important applications, from smart materials (e.g., better solar cells and batteries) to drug design (bio-molecular simulation). CCP-QC will thus contribute to the development of faster computational methods in many important applications with wide-ranging scientific, social and economic benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fc131ba571a1de9cbef6b1abefc3a0bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fc131ba571a1de9cbef6b1abefc3a0bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Rigetti & Co Inc, Bluefors Oy, Quantum Motion, SIEMENS PLC, Keysight Technologies (United States) +40 partnersRigetti & Co Inc,Bluefors Oy,Quantum Motion,SIEMENS PLC,Keysight Technologies (United States),UCL,ZURICH INSTRUMENTS AG,HGF Limited,Networked Quantum Information Technology,British Telecommunications plc,Quantum Motion,Riverlane,Google Inc,University of Cambridge,Toshiba (United Kingdom),Networked Quantum Information Technology,Cambridge Quantum Computing Limited,BT Group (United Kingdom),Cambridge Quantum Computing Limited,Quantum Communications Hub (QComm),Qinetiq (United Kingdom),Qioptiq Ltd,PhaseCraft Ltd,Microsoft (United States),Siemens PLC,TREL,BT Group (United Kingdom),Microsoft (United States),Hitachi Cambridge Laboratory,Google (United States),Nature Physics,Siemens (United Kingdom),Quantemol,Quantum Communications Hub (QComm),HGF Limited,Rigetti & Co Inc,Nature Physics,Quantemol (United Kingdom),Hitachi Cambridge Laboratory,Quandela SAS,Quandela SAS,Bluefors Oy,Keysight Technologies,River Lane Research,PhaseCraft Ltd.Funder: UK Research and Innovation Project Code: EP/S021582/1Funder Contribution: 7,017,290 GBPFor many years, quantum mechanics has been a curiosity at the heart of physics. Its development was essential to many of the key breakthroughs of 20th century science, but it is famous for counter-intuitive features; the superposition illustrated by Schrödinger's cat; and the quantum entanglement responsible for Einstein's "spooky action at a distance". Quantum Technologies are based on the idea that the "weirdness" of quantum mechanics also presents a technological opportunity. Since quantum mechanical systems behave in a fundamentally different way to large-scale systems, if this behaviour could be controlled and exploited it could be utilised for fundamentally new technologies. Ideas for using quantum effects to enhancing computation, cryptography and sensing emerged in the 1980s, but the level of technology required to exploit them was out of reach. Quantum effects were only observed in systems at either very tiny scales (at the level of atoms and molecules) or very cold temperatures (a fraction of a degree above absolute zero). Many of the key quantum mechanical effects predicted many years ago were only confirmed in the laboratory in the 21st century. For example, a decisive demonstration of Einstein's spooky action at a distance was first achieved in 2015. With such rapid experimental progress in the last decade, we have reached a turning point, and quantum effects previously confined to university laboratories are now being demonstrated in commercially fabricated chips and devices. Quantum Technologies could have a profound impact on our economy and society; Quantum computers that can perform computations beyond the capabilities of the most powerful supercomputer; microscopic sensing devices with unprecedented sensitivity; communications whose security is guaranteed by the laws of physics. These technologies could be hugely transformative, with potential impacts in health-care, finance, defence, aerospace, energy and transport. While the past 30 years of quantum technology research have been largely confined to universities, the delivery of practical quantum technologies over the next 5-10 years will be defined by achievements in industrial labs and industry-academic partnerships. For this industry to develop, it will be essential that there is a workforce who can lead it. This workforce requires skills that no previous industry has utilised, combining a deep understanding of the quantum physics underlying the technologies as well as the engineering, computer science and transferrable skills to exploit them. The aim of our Centre for Doctoral Training is to train the leaders of this new industry. They will be taught advanced technical topics in physics, engineering, and computer science, alongside essential broader skills in communication and entrepreneurship. They will undertake world-class original research leading to a PhD. Throughout their studies they will be trained by, and collaborate with a network of partner organisations including world-leading companies and important national government laboratories. The graduates of our Centre for Doctoral Training will be quantum technologists, helping to create and develop this potentially revolutionary 21st-century industry in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0fecc36b09872a136add4ac539b70ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0fecc36b09872a136add4ac539b70ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Hewlett-Packard (United States), Quantum Communications Hub (QComm), ID Quantique (Switzerland), Xanadu, Airbus Defence and Space +92 partnersHewlett-Packard (United States),Quantum Communications Hub (QComm),ID Quantique (Switzerland),Xanadu,Airbus Defence and Space,Ultrahaptics Ltd,University of Copenhagen,Networked Quantum Information Technology,Oxford Instruments (United Kingdom),QxBranch,M Squared Lasers (United Kingdom),Google (United States),Keysight Technologies (United Kingdom),Quantum Technology Hub,National Physical Laboratory,Nabla Ventures,ARC Centre of Excellence for Engineered Quantum Systems,M Squared Lasers (United Kingdom),Fluoretiq,Defence Science & Tech Lab DSTL,Toshiba (United Kingdom),QxBranch,Ultrahaptics (United Kingdom),Hitachi Cambridge Laboratory,KETS Quantum Security Ltd,1QBit,1QBit,University of Sussex,RayCal,BTEXACT,University of Sussex,Sandia National Laboratories,University of Cambridge,Microsoft Research,PsiQuantum Corp.,Quantum Communications Hub (QComm),ICE Oxford Limited,Stanford University,Google Inc,Quantum Technology Hub,PhaseCraft Ltd,University of Waterloo,QLM Technology Ltd,Rigetti & Co Inc,Keysight Technologies UK Ltd,ICE Oxford Limited,RedWave Labs,TREL,BT Group (United Kingdom),University of Waterloo (Canada),ID Quantique,University of Bristol,Helibronn Institute,Sandia National Laboratories California,Defence Science and Technology Laboratory,Xanadu,University of Copenhagen,Fraunhofer UK Research Ltd,Rigetti & Co Inc,Fraunhofer UK Research Ltd,Defence Science & Tech Lab DSTL,EQUS,Chronos Technology Limited,Quandela SAS,Imperial College London,Quantum Benchmark,Nabla Ventures,Hewlett-Packard Company Inc,Networked Quantum Information Technology,QuantIC,Quantum Benchmark,Quandela SAS,QLM Technology Ltd.,Oxford Instruments (United Kingdom),SU,RayCal,Airbus Defence and Space,Thales Group,NPL,QuantIC,Microsoft (United States),RedWave Labs,Kets-Quantum Security limited,BTEXACT,Helibronn Institute,Fluoretiq,Airbus (United Kingdom),Chronos Technology (United Kingdom),Hitachi Cambridge Laboratory,PsiQuantum Corp.,Stanford University,University of Bristol,Thales Group (UK),Riverlane,River Lane Research,PhaseCraft Ltd.,Thales (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S023607/1Funder Contribution: 6,242,250 GBPQuantum Technologies (QT) are at a pivotal moment with major global efforts underway to translate quantum information science into new products that promise disruptive impact across a wide variety of sectors from communications, imaging, sensing, metrology, simulation, to computation and security. Our world-leading Centre for Doctoral Training in Quantum Engineering will evolve to be a vital component of a thriving quantum UK ecosystem, training not just highly-skilled employees, but the CEOs and CTOs of the future QT companies that will define the field. Due to the excellence of its basic science, and through investment by the national QT programme, the UK has positioned itself at the forefront of global developments. There have been very recent major [billion-dollar] investments world-wide, notably in the US, China and Europe, both from government and leading technology companies. There has also been an explosion in the number of start-up companies in the area, both in the UK and internationally. Thus, competition in this field has increased dramatically. PhD trained experts are being recruited aggressively, by both large and small firms, signalling a rapidly growing need. The supply of globally competitive talent is perhaps the biggest challenge for the UK in maintaining its leading position in QT. The new CDT will address this challenge by providing a vital source of highly-trained scientists, engineers and innovators, thus making it possible to anchor an outstanding QT sector here, and therefore ensure that UK QT delivers long-term economic and societal benefits. Recognizing the nature of the skills need is vital: QT opportunities will be at the doctoral or postdoctoral level, largely in start-ups or small interdisciplinary teams in larger organizations. With our partners we have identified the key skills our graduates need, in addition to core technical skills: interdisciplinary teamwork, leadership in large and small groups, collaborative research, an entrepreneurial mind-set, agility of thought across diverse disciplines, and management of complex projects, including systems engineering. These factors show that a new type of graduate training is needed, far from the standard PhD model. A cohort-based approach is essential. In addition to lectures, there will be seminars, labs, research and peer-to-peer learning. There will be interdisciplinary and grand challenge team projects, co-created and co-delivered with industry partners, developing a variety of important team skills. Innovation, leadership and entrepreneurship activities will be embedded from day one. At all times, our programme will maximize the benefits of a cohort-based approach. In the past two years particularly, the QT landscape has transformed, and our proposed programme, with inputs from our partners, has been designed to reflect this. Our training and research programme has evolved and broadened from our highly successful current CDT to include the challenging interplay of noisy quantum hardware and new quantum software, applied to all three QT priorities: communications; computing & simulation; and sensing, imaging & metrology. Our programme will be founded on Bristol's outstanding activity in quantum information, computation and photonics, together with world-class expertise in science and engineering in areas surrounding this core. In addition, our programme will benefit from close links to Bristol's unique local innovation environment including the visionary Quantum Technology Enterprise Centre, a fellowship programme and Skills Hub run in partnership with Cranfield University's Bettany Centre in the School of Management, as well as internationally recognised incubators/accelerators SetSquared, EngineShed, UnitDX and the recently announced £43m Quantum Technology Innovation Centre. This will all be linked within Bristol's planned £300m Temple Quarter Enterprise Campus, placing the CDT at the centre of a thriving quantum ecosystem.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d8bb619ca6a0c0302691696dbe4d3839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d8bb619ca6a0c0302691696dbe4d3839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu