
BRE
9 Projects, page 1 of 2
assignment_turned_in Project2007 - 2010Partners:University of Dundee, BRE, Building Research Establishment (BRE), Building Research EstablishmentUniversity of Dundee,BRE,Building Research Establishment (BRE),Building Research EstablishmentFunder: UK Research and Innovation Project Code: EP/E031749/1Funder Contribution: 166,668 GBPSoils display strain rate dependant behaviour which has implications for the understanding of a wide range of geotechnical events. However, the current understanding of the results of varying strain rate on soil behaviour are often ignored in design, field studies, laboratory testing and soil mechanics frameworks. Where previous work to understand rate effects has been undertaken it focuses on relatively low strain rates or narrow ranges of strain rates that do not reflect the rates of field events. In addition several field testing techniques rely on the evaluation of rate effects for analysis. These parameters are often derived from costly field studies or specialised laboratory testing. It is the intention through this proposal to examine the behaviour of fine grained soils over a wide range of strain rates whilst varying soil composition. This approach will identify both behaviour at key strain rates and allow understanding of what the main controlling factors are at soil micro structural level. This will be achieved through the use of high speed monotonic triaxial testing with on-sample strain and pore pressure measurement. In parallel the soils will be characterised using simple standardised laboratory testing techniques. The high strain rate testing and standard testing will then be compared to develop a predictive framework which will allow the determination of soil rate potential from standardised laboratory tests without the need for specialised testing or empirical studies. This research study will lead to improved understanding of what soil properties influence rate effect potential and how to quantify them which will be exploitable by academics and industry alike.
more_vert assignment_turned_in Project2021 - 2024Partners:University of Warwick, FeTu Ltd, CFMS Services Ltd, NEPIC, CRODA EUROPE LTD +97 partnersUniversity of Warwick,FeTu Ltd,CFMS Services Ltd,NEPIC,CRODA EUROPE LTD,EDGE Digital Manufacturing Limited,Industry Wales,Hartree Centre,University of Sheffield,Henry Royce Institute,Liberty Speciality Steels,VESUVIUS UK LTD,Mineral Products Association,Union Papertech Ltd,Tata Steel UK,University of Liverpool,Goodwin Steel Castings,Digital Catapult,EDGE Digital Manufacturing Limited,North East Process Industry ClusterNEPIC,Knowledge Centre for Materials Chemistry,N8 Research Partnership,Industry Wales,AkzoNobel,Glass Futures Ltd,Johnson Matthey Plc,British Ceramic Confederation,Union Papertech Ltd,North East Process Industry ClusterNEPIC,AkzoNobel UK,Northumbria University,British Ceramic Confederation,Building Research Establishment,Sheffield Hallam University,AkzoNobel UK,University of Sheffield,British Glass,Aluminium Federation Ltd,British Steel Ltd,Goodwin Steel Castings,North West Business Leadership Team,Sheffield Forgemasters Engineering Ltd,Johnson Matthey,Celsa Steel UK,BRE,IOM3,Henry Royce Institute,N8 Research Partnership,FeTu Ltd,Confederation of Paper Industries,Lucideon Ltd,University of Liverpool,Confederation of Paper Industries,University of Warwick,James Cropper Plc,Vesuvius UK,British Glass,British Coatings Federation,Policy Connect,Tata Steel,Imerys,Knowledge Centre for Materials Chemistry,Materials Processing Institute (MPI),Liberty Steel UK,Ferroday Ltd,British Glass,UK Steel,British Coatings Federation,Hartree Centre,[no title available],IoM3,Breedon Cement Ltd,Aluminium Federation Ltd,Northumbria University,Imerys,Mineral Products Association,Glass Futures Ltd,James Cropper Plc,CRODA EUROPE LIMITED,Johnson Matthey plc,UK Steel,Connected Digital Economy Catapult,Tata Steel (United Kingdom),Croda (United Kingdom),Building Research Establishment (BRE),Ferroday Ltd,Celsa Steel UK,CERAM Research,PYROPTIK INSTRUMENTS LIMITED,North West Business Leadership Team,LKAB Minerals Ltd,CFMS Services Ltd,Policy Connect,Sheffield Forgemasters Engineering Ltd,LKAB Minerals Ltd,Breedon Cement Ltd,Science and Technology Facilities Council,PYROPTIK INSTRUMENTS LIMITED,Materials Processing Institute (MPI),CFMS Ltd,SHU,British Steel LtdFunder: UK Research and Innovation Project Code: EP/V026402/1Funder Contribution: 2,259,080 GBPThe UK Foundation Industries (Glass, Metals, Cement, Ceramics, Bulk Chemicals and Paper), are worth £52B to the UK economy, produce 28 million tonnes of materials per year and account for 10% of the UK total CO2 emissions. These industries face major challenges in meeting the UK Government's legal commitment for 2050 to reduce net greenhouse gas emissions by 100% relative to 1990, as they are characterised by highly intensive use of both resources and energy. While all sectors are implementing steps to increase recycling and reuse of materials, they are at varying stages of creating road maps to zero carbon. These roadmaps depend on the switching of the national grid to low carbon energy supply based on green electricity and sustainable sources of hydrogen and biofuels along with carbon capture and storage solutions. Achievement of net zero carbon will also require innovations in product and process design and the adoption of circular economy and industrial symbiosis approaches via new business models, enabled as necessary by changes in national and global policies. Additionally, the Governments £4.7B National Productivity Investment Fund recognises the need for raising UK productivity across all industrial sectors to match best international standards. High levels of productivity coupled with low carbon strategies will contribute to creating a transformation of the foundation industry landscape, encouraging strategic retention of the industries in the UK, resilience against global supply chain shocks such as Covid-19 and providing quality jobs and a clean environment. The strategic importance of these industries to UK productivity and environmental targets has been acknowledged by the provision of £66M from the Industrial Strategy Challenge Fund to support a Transforming Foundation Industries cluster. Recognising that the individual sectors will face many common problems and opportunities, the TFI cluster will serve to encourage and facilitate a cross sectoral approach to the major challenges faced. As part of this funding an Academic Network Plus will be formed, to ensure the establishment of a vibrant community of academics and industry that can organise and collaborate to build disciplinary and interdisciplinary solutions to the major challenges. The Network Plus will serve as a basis to ensure that the ongoing £66M TFI programme is rolled out, underpinned by a portfolio of the best available UK interdisciplinary science, and informed by cross sectoral industry participation. Our network, initially drawn from eight UK universities, and over 30 industrial organisations will support the UK foundation industries by engaging with academia, industry, policy makers and non-governmental organisations to identify and address challenges and opportunities to co-develop and adopt transformative technologies, business models and working practices. Our expertise covers all six foundation industries, with relevant knowledge of materials, engineering, bulk chemicals, manufacturing, physical sciences, informatics, economics, circular economy and the arts & humanities. Through our programme of mini-projects, workshops, knowledge transfer, outreach and dissemination, the Network will test concepts and guide the development of innovative outcomes to help transform UK foundation industries. The Network will be inclusive across disciplines, embracing best practice in Knowledge Exchange from the Arts and Humanities, and inclusive of the whole UK academic and industrial communities, enabling access for all to the activity programme and project fund opportunities.
more_vert assignment_turned_in Project2006 - 2008Partners:UKWIR, Birmingham City Council, Government Office West Midlands, Birmingham City Council, University of Birmingham +29 partnersUKWIR,Birmingham City Council,Government Office West Midlands,Birmingham City Council,University of Birmingham,BRE,RSWT,Science and Technology Facilities Council,Government Office West Midlands,Arup Group Ltd,Ove Arup & Partners Ltd,Carbon Trust,Building Research Establishment,BIRMINGHAM CITY COUNCIL,BCSD (UK),Building Research Establishment (BRE),MADE,BCSD (UK),UK Water Industry Research Ltd (UKWIR),South East England Regional Assembly,The Carbon Trust,ISIS,WILDLIFE TRUST FOR BIRMINGHAM,MARTINEAU JOHNSON,Advantage West Midlands,ISIS,Royal Inst of British Architects RIBA,MARTINEAU JOHNSON,South East England Regional Assembly,University of Birmingham,Royal Institute of British Architects,MADE,UK Water Industry Research Ltd,Advantage West MidlandsFunder: UK Research and Innovation Project Code: EP/E021603/1Funder Contribution: 512,891 GBPThe aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.
more_vert assignment_turned_in Project2009 - 2012Partners:Harrogate Borough Council, Harrogate Borough Council, JRF, CIRIA, BRE +7 partnersHarrogate Borough Council,Harrogate Borough Council,JRF,CIRIA,BRE,Warm Wales - Cymru Gynnes CBC,Building Research Establishment,Building Research Establishment (BRE),Warm Wales - Cymru Gynnes CBC,CIRIA,Joseph Rowntree Foundation,UCLFunder: UK Research and Innovation Project Code: EP/G000395/1Funder Contribution: 2,094,700 GBPOur vision is to engage users in the design of control systems they like, that allow them to create the comfort conditions they want, and which through using the technology and fabric of their homes more effectively, reduces their energy use by 20%. We want to design and test these control systems in a way that complies with utilities' CERT-2 obligations, and provide design, installation and maintenance guidance which allows others to learn from our work and apply it more widely. We estimate this has the potential to save around 3 MT CO2 annually.Homes use about a third of the UK's energy, and produce about a third of all CO2 emissions. Because of the low rates of demolition, and the difference in efficiency between new and old houses, even if every house built from now to 2050 was zero-carbon, the total emissions from the UK housing stock would stay roughly the same. Any significant reductions must come from existing homes. In existing homes, making them comfortable (primarily through heating) uses around two thirds of their energy and carbon. We also know that how occupants' make their home comfortable, through use of the heating system, doors, windows, lighting, the clothes they wear, etc, has an enormous effect on energy use. Identical homes, with different occupants, can vary in energy use by a factor of two to three. Driving your home well can reduce your carbon footprint much more than installing wind turbines or solar panels. Currently, driving your home well is very hard to do. There's almost no feedback on the effect of leaving the bedroom window open at night, or having your thermostat at 21 C rather than 19 C. A quarterly energy bill provides almost no help so occupants' are currently 'driving blind' when it comes to saving energy or reducing their carbon footprint. This project aims to give them something to see with / forms of feedback on the energy costs of their actions which are immediate and in a form they themselves want. We will work with occupants, in their own homes, to understand what they would find useful. Using an action research approach and user centred design methods, we will understand their day to day comfort practices (i.e. how they drive their home) and design systems to help them drive it better, better in terms of comfort, spending less on energy and reducing their carbon footprint. Previous studies show that relatively simple forms of feedback, such as an LCD display showing instantaneous energy use, can help people save 5 to 15%. While these displays are good, they usually only display the total electricity used in the home, not on individual appliances, and they only provide information. In order for people to make changes they need three things: feedback (information on energy use); motivation (the desire to reduce energy use) and choice (the ability to act differently). There is scope to design technologies that provide all three of these - to provide occupants with systems for control that tell them what is using energy, what choices they have to use less, and do to so in a way they like to engage with. An approach targeting all three of these issues, and engaging users throughout the design process, has not been tried before but given previous studies, savings of 20% could reasonably be expected. The research is highly interdisciplinary and is based in field work involving lots of monitoring to ensure the technologies work and deliver real, measurable savings. The research team is a balance of technologists and social researchers and through working closely with householders, utilities and housing providers, we feel we can make a real contribution to understanding how people use energy to make their homes comfortable, and to develop control systems that can help them do this more effectively while saving on energy costs and reducing their carbon footprint.
more_vert assignment_turned_in Project2007 - 2008Partners:MARTINEAU JOHNSON, Advantage West Midlands, UKWIR, Carbon Trust, BIRMINGHAM CITY COUNCIL +30 partnersMARTINEAU JOHNSON,Advantage West Midlands,UKWIR,Carbon Trust,BIRMINGHAM CITY COUNCIL,University of Sheffield,BRE,BCSD (UK),[no title available],Building Research Establishment,Birmingham City Council,Ove Arup & Partners Ltd,Building Research Establishment (BRE),Science and Technology Facilities Council,RSWT,Royal Institute of British Architects,Government Office West Midlands,MARTINEAU JOHNSON,ISIS,Royal Inst of British Architects RIBA,ISIS,Government Office West Midlands,Arup Group Ltd,South East England Regional Assembly,UK Water Industry Research Ltd (UKWIR),The Carbon Trust,University of Sheffield,MADE,WILDLIFE TRUST FOR BIRMINGHAM,BCSD (UK),South East England Regional Assembly,Birmingham City Council,MADE,UK Water Industry Research Ltd,Advantage West MidlandsFunder: UK Research and Innovation Project Code: EP/E025579/1Funder Contribution: 7,129 GBPThe aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.
more_vert
chevron_left - 1
- 2
chevron_right