
Yokogawa Measurement Technologies Ltd
Yokogawa Measurement Technologies Ltd
2 Projects, page 1 of 1
assignment_turned_in Project2024 - 2026Partners:Libertine FPE Ltd, IBM (United Kingdom), Yokogawa Measurement Technologies Ltd, Active Building Centre, CELL THERAPY CATAPULT LIMITED +14 partnersLibertine FPE Ltd,IBM (United Kingdom),Yokogawa Measurement Technologies Ltd,Active Building Centre,CELL THERAPY CATAPULT LIMITED,Airbus Group Limited (UK),Airbus (United Kingdom),ADVANCED MANUFACTURING RESEARCH CENTRE,Quanser Consulting Inc.,Manufacturing Technology Centre,Newcastle University,IBM UNITED KINGDOM LIMITED,HIGH VALUE MANUFACTURING CATAPULT,The MathWorks Inc,National Metals Technology Centre,ABB Group (International),Cell Therapy Catapult (replace),B Braun Medical Ltd,Siemens plc (UK)Funder: UK Research and Innovation Project Code: EP/X031470/1Funder Contribution: 568,024 GBPWe are increasingly dependent on complex "smart" systems: cities, houses, vehicles, electricity grids and a myriad of connected 'things' gathering information and performing automated decision-making with or without a human in the loop. This is in part possible because of technological advances in sensing, actuation, computer hardware, networking and communication, which enable the harnessing, processing and analysis of vast volumes of data. Major advances in Automatic Control Engineering have provided the underpinning theory, methodology and practice needed to design and implement highly complex control and decision-making systems. Automatic control engineering continues to play a vital role in realising the government's long-term industrial strategy of raising productivity and earning power within the UK. Specifically, automatic control is a key enabling technology for all four major societal challenge themes identified in the 2017 UK Industrial Strategy: AI and Data, Clean Growth, Future Mobility and Aging Society and the specific challenge areas within each theme. Automatic control not only dramatically improves the productivity, efficiency, reliability and safety of a wide range of processes across all sectors, but also provides fundamental theory, methodologies and tools to further the understanding and enable discovery in other disciplines such as biology, medicine and social sciences. Whilst the UK led the First Industrial Revolution through the adoption of new technologies, including automation and control, today it lags behind its international competitors. This is evidenced in part by the slow productivity growth over the past decade, which is in sharp contrast to other economic indicators. It is argued that if the UK does not make a concerted effort to transition towards automation, it will miss a pivotal opportunity for growth, estimated to be worth more than £200 billion to the UK economy by 2030. For the UK to become a global leader in intelligent automation and leapfrog international competitors, it is vital that it consolidates its research leadership in automatic control engineering. The UK has a strong control engineering community of well over 1000 active researchers, and engineering practitioners spanning all career stages, which are represented at an international level by the UK Automatic Control Council (UKACC), the United Kingdom's National Member Organisation (NMO) of the International Federation of Automatic Control (IFAC), acting as an effective link between the UK and the international control communities. At the time of dramatic advances in automation, AI, sensing and computation technologies, in order to engage effectively with the UK Grand Challenge research agenda, avoid fragmentation of effort and to ensure control engineers are engaged from the outset with end-users or initiatives, there is a need for the UK control community to connect effectively with other academic and industry stakeholders, to develop a common research vision and strategy and to start addressing these challenges through ambitious pilot studies, paving the way for full-scale, high-impact grant proposals, novel groundbreaking research and knowledge transfer projects. The Automatic Control Engineering Network aims to drive forward the UK's research and international leadership in next-generation automation and control, by bringing together and connecting the country's expertise in automation, the internet-of-things, cybersecurity, machine learning and robotics, with industry stakeholders and the wider research communities working towards addressing the same pressing societal challenges. Through the creation of a Virtual Centre of Excellence in Automation and Control, the Network will ensure that the coordination of research efforts, industry engagement, training activities and resource sharing needed to address Grand Challenges, will continue beyond the end of the funding period.
more_vert assignment_turned_in Project2013 - 2016Partners:Power Systems Warehouse Ltd, National Grid PLC, Power Systems Warehouse Ltd, Rolls-Royce (United Kingdom), Alstom (United Kingdom) +16 partnersPower Systems Warehouse Ltd,National Grid PLC,Power Systems Warehouse Ltd,Rolls-Royce (United Kingdom),Alstom (United Kingdom),[no title available],Alstom Ltd (UK),Yokogawa Measurement Technologies Ltd,Texas Instruments Ltd,Alstom Ltd (UK),Turbopowersystems,Midlands Energy Consortium,University of Sheffield,National Grid plc,TI,University of Sheffield,Rolls-Royce Plc (UK),Turbo Power Systems (TPS),Midlands Energy Consortium,Rolls-Royce (United Kingdom),Yokogawa Measurement Technologies LtdFunder: UK Research and Innovation Project Code: EP/J01558X/1Funder Contribution: 372,165 GBPUK Research Councils have set up a RCUK Energy Programme, investing more than £530 million in research and skills to pioneer a low carbon future. Energy is also a major application area funded by TSB. Several major global companies, including BP, Caterpillar, EDF Energy, E.On, Rolls-Royce and Shell, have joined their forces with the UK government to establish the Energy Technologies Institute, creating a potential £1billion investment fund for new energy technologies. The ongoing research programmes cover various aspects of energy from generation, transmission to end use, in order to create affordable, reliable and sustainable energy for heat, power and transport. Increasing the share of renewable energy, e.g. wind, solar, marine and biomass, and improving energy efficiency are the two most important ultimate goals for all energy-related programmes. The renewable energy needs to be connected to the grid, preferably, via inverters in order for them to take part in the grid regulation, in particular, for large-scale renewable installations. However, the capacity of individual power inverters is limited and multiple inverters are needed to be operated in parallel to achieve the power capacity needed. For a 5GW offshore wind power site, 1000 of 5MW inverters are needed. How to make sure that the inverters will share the load proportionally/evenly is a challenge. It should not be assumed that inverters could be connected in parallel automatically. Without proper mechanisms in place, circulating currents may appear and some inverters may be overloaded, which may cause damage. The system may even become unstable and lead to unwanted behaviours. The parallel operation of inverters has been a major problem in industry that prevents the large-scale utilisation of renewable energy sources. This is a simple problem which has not been solved properly for many years. The conventional droop control strategy is a promising technology but the sharing accuracy cannot be guaranteed. Very recently, the PI has revealed that the conventional droop control scheme and its variants do not possess a mechanism to make sure that the sharing accuracy is robust against numerical computational errors, parameter drifts and component mismatches. A robust droop controller is then proposed, which is able to maintain accurate sharing of real power and reactive power at the same time and also to maintain good voltage regulation when the inverters are of the same type. The problem is still unsolved when the inverters are different. The major aims of the project are to develop fundamental understanding about parallel-operated inverters and to develop enabling contorl technologies to facilitate the large-scale utilisation of renewable energy and distributed generation. The ultimate goals of the project are to develop universal control strategies that allow the parallel operation of inverters with different types of output impedances and to develop a fundamental theory to guarantee the stable operation of power systems with parallel-operated inverters.
more_vert