Powered by OpenAIRE graph
Found an issue? Give us feedback

Fugro GEOS Ltd

Fugro GEOS Ltd

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/S023801/1
    Funder Contribution: 6,732,970 GBP

    This proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/T010665/1
    Funder Contribution: 673,135 GBP

    Anthropogenic structures are deployed in marine environments to support industrial activities worldwide. Sessile epibiota rapidly colonise structures in the sea, in turn attracting mobile invertebrates, fish and top predators. Understanding the ecosystem effects of the increasing number of man-made structures in marine environments is a priority for research, and necessary to support sustainable installation and decommissioning practices worldwide. Secondary production is a measure of energy flow through the food-web, and relates directly to ecosystem function, thus secondary production is a proxy for ecosystem function. In order to understand the relationship between secondary production and wider ecosystem processes (e.g. mobile mega fauna behaviour), we need to accurately predict secondary production (the focus of this proposal), and make this data available to ecosystem modellers. Obtaining bespoke data on secondary production associated with offshore structures is limited by the time/cost constraints of conducting dedicated ecological surveys. Offshore energy operators use remotely operated vehicles (ROVs) to obtain videos of infrastructure for maintenance purposes. These videos cover all structures types, ages and locations. Recent advances in "Structure from Motion Photogrammetry" mean that it is now possible to generate 3D images of epibiota from this video footage, and use the 3D images to estimate the biovolume of epibiota. Biovolume can be converted to biomass, then to secondary production, by applying taxa-specific conversion factors. By pairing 3D imaging with supervised machine learning algorithms to automatically identify taxa, (and then apply the taxa-specific conversions), large volumes of ROV data can be rapidly processed to produce high-resolution estimates of secondary production for entire structures /production basins. In a previous feasibility study, we pioneered 3D imaging of man-made structures in temperate and tropical waters, and used these images to estimate epibiota biovolumes. We have developed and applied protocols to convert biovolumes into biomass via taxon-specific calibration curves. Here, we propose to generate 3D images for 85 man-made structures located in the North Sea, and wider UK waters, using existing ROV footage. From the images, we will estimate the biovolume of the observed taxa. We will then develop/refine machine learning algorithms to automatically identify the taxa within the 3D images, and apply taxa-specific volume-to-mass calibration curves. We will bring these developments together to estimate secondary production on the 85 man-made structures, and develop a statistical model of secondary production as a function of structure location, type and age, which can be applied to other structures. Our novel approach will enable us to (1) generate, for the first time, an estimate of secondary production across all offshore energy structures within the whole North Sea ecosystem, (2) predict changes to ecosystem function stemming from a range of installation/decommissioning scenarios, and (3) cross-validate/compare our estimates to natural reef habitats and structures in Gulf of Mexico, Australia and the Gulf of Thailand, where similar techniques are being applied. Our research, which addresses INSITE2 Challenges 2 and 3, will significantly advance our understanding of the ecological role played by man-made structures, and serve as an evidence base to support local, regional and global assessments of the ecosystem-scale consequences of installing and removing structures. Through development of 3D imaging and auto-ID, we will also deliver a novel monitoring tool that facilitates a strategic whole-system approach to the monitoring/regulation of offshore structures. Such a tool could be readily applied to historic industry data for ecological (and engineering) applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W006235/1
    Funder Contribution: 1,203,430 GBP

    Geotechnical infrastructure fundamentally underpins the transport, energy and utility networks of our society. The design of this infrastructure faces increasing challenges related to construction in harsher or more complex environments and stricter operating conditions. Modern design approaches recognise that the strength and stiffness of ground, and therefore the safety and resilience of our infrastructure, changes through time under the exposure to in-service loading - whether from trains, traffic, waves, currents, seasonal moisture cycles, redevelopment of built structures or nearby construction in congested urban areas. However, advances in geotechnical analysis methods have not been matched by better tools to probe and test the ground in situ, in a way that represents realistic real-world loading conditions. This research will improve current geotechnical site investigation practice by developing ROBOCONE - a new site investigation tool for intelligent ground characterisation - and its interpretative theoretical framework - from data to design. ROBOCONE will combine modern technologies in robotic control and sensor miniaturisation with new theoretical analyses of soil-structure interaction. Breaking free from the kinematic constraints of conventional site investigation tools, ROBOCONE will feature three modular sections which can be remotely actuated and controlled to impose horizontal, vertical and torsional kinematic mechanisms in the ground closely mimicking loading and deformation histories experienced during the entire lifespan of a geotechnical infrastructure. The device development will be supported by new theoretical approaches to interpret ROBOCONE's data to provide objective and reliable geotechnical parameters, ready for use in the modern "whole-life" design of infrastructure. This research will provide a paradigm shift in equipment for in situ ground characterisation. ROBOCONE will enable the cost-effective and reliable characterisation of advanced soil properties and their changes with time directly in-situ, minimising the need for costly and time-consuming laboratory investigations, which are invariably affected by sampling and testing limitations. Geotechnical in-situ characterisation will be brought into step with modern, resilient and optimised geotechnical design approaches.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S000747/1
    Funder Contribution: 9,193,410 GBP

    The UK is at the forefront of the development, adoption and export of Offshore Renewable Energy (ORE) technologies: offshore wind (OW), wave and tidal energy. To sustain this advantage, the UK must spearhead research and innovation in ORE, which will accelerate its adoption and widen the applicability of these technologies. Many organisations across the industry-academia spectrum contribute to ORE research and development (R&D) co-ordination and the ORE Supergen hub strategy will take a leadership role, integrating with these activities to guide and deliver fundamental research to advance the ORE sector. The role of the Supergen ORE hub is to provide research leadership for the ORE community to enable transformation to future scale ORE. The hub will articulate the vision for the future scale ORE energy landscape, will identify the innovations required and the fundamental research needed to underpin the innovation. It will also generate the pathway for translation of research and innovation into industry practice, for policy adaptation and public awareness in order to support the increased deployment of ORE technologies, reducing energy costs while increasing energy security, reducing CO2 emissions and supporting UK jobs. The hub will work closely with the ORE Catapult (ORECAT) and become well-connected with industry, government, the wider research community in the UK and internationally. It will bring together these groups to assemble the expertise and experience to define and target the innovations, research and actions to achieve the ambitious energy transformation envisioned for the UK. The new Supergen ORE hub will continue to support and build on the existing internationally leading academic capacity within these three research areas (OW, wave and tidal technology), whilst also enabling shared learning on common research challenges. The ORE hub will build a multi-disciplinary, collaborative approach, which will bring benefits through the sharing of best practice and exploitation of synergy, support equality and diversity and the development of the next generation of research leaders. The hub strategy provides an overview of research and innovation priorities, which will be addressed through multiple routes but linked through the hub, with activities designed to stimulate alignment across the research community and industry sectors to maximise engagement with prioritised research challenges through and beyond the hub time-scale. These include: 1. Networking and engagement activities to bring the research community together with industry and other stakeholders to ensure research efforts within the community are aligned, complementary and remain inspired by or relevant to industry challenges. This will include support and development of the ECR community to ensure sustainability and promote EDI within the sector as a whole. Actions will also be taken to identify potential cross over research synergies and opportunities for transfer of research between sectors and disciplines, both within and external to ORE. Furthermore, a structured communication plan built around progress of the community towards the sector research challenges will promote exploitation and commercialisation. 2. A set of core research work packages addressing priority topics selected and structured to maximize progress towards the sector objectives and building on the cross cutting expertise of the co-director team. 3. Targeted use of flexible fund as seed-corn activity leading to projects aligned with, and in partnership with, the hub.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P033091/1
    Funder Contribution: 1,121,310 GBP

    Chalk is a highly variable soft rock that covers much of Northern Europe and is widespread under the North and Baltic Seas. It poses significant problems for the designers of large foundations for port, bridge and offshore wind turbine structures that have to sustain severe environmental loading over their many decades in service. Particular difficulties are faced when employing large driven steel piles to secure the structures in place. While driven pile foundation solutions have many potential advantages, chalk is highly sensitive to pile driving and to service loading conditions, such as the repeated cyclic buffeting applied to bridge, harbour and offshore structures by storm winds and wave impacts. Current guidance regarding how to allow for difficult pile driving conditions or predict the piles' vertical and lateral response to loads is notoriously unreliable in chalk. There is also no current industrial guidance regarding the potentially positive effects of time (after driving) on pile behaviour or the generally negative impact of the cyclic loading that the structures and their piled foundations will inevitably experience. These shortfalls in knowledge are introducing great uncertainty into the assessment and design of a range of projects around the UK and Northern Europe. Particularly affected are a series of planned and existing major offshore wind farm developments. The uncertainty regarding foundation design and performance poses a threat to the economic and safe harnessing of vital renewable, low carbon, offshore energy supplies. Better design guidelines will reduce offshore wind energy costs and also help harbour and transport projects to progress and function effectively, so delivering additional benefits to both individual consumers and UK Industry. The research proposed will generate new driven pile design guidance for chalk sites through a comprehensive programme of high quality field tests, involving multiple loading scenarios, on 21 specially instrumented driven tubular steel test piles, at an onshore test site in Kent. This will form a benchmark set of results that will be complemented by comprehensive advanced drilling, sampling, in-situ testing and laboratory experiments, supported by rigorous analysis and close analysis of other case history data. The key aim is to develop design procedures that overcome, for chalk, the current shortfalls in knowledge regarding pile driving, ageing, static and cyclic response under axial and lateral loading. The main deliverable will be new guidelines for practical design that will be suitable for both onshore and offshore applications.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.