
Thames Water Utilities Limited
Thames Water Utilities Limited
36 Projects, page 1 of 8
assignment_turned_in Project2006 - 2010Partners:Anglian Water Services Limited, University of Oxford, I.G.CATALYSTS LTD, Anglian Water Services Ltd, Thames Water Utilities Limited +11 partnersAnglian Water Services Limited,University of Oxford,I.G.CATALYSTS LTD,Anglian Water Services Ltd,Thames Water Utilities Limited,Chameleon Biosurfaces Ltd,MAST Carbon International Ltd,CMR Fuel Cells Ltd,MCI,Biocatalysts Ltd,Yorkshire Water Services Ltd,Yorkshire Water Services Ltd,Anglian Water Services Limited,Chameleon Biosurfaces Ltd,Thames Water (United Kingdom),CMR Fuel Cells LtdFunder: UK Research and Innovation Project Code: EP/D047943/1Funder Contribution: 2,024,720 GBPA consortium of teams from 6 universities aims to achieve major advances in a technology that potentially produces electricity directly from sustainable biological materials and air, in devices known as biological fuel cells. These devices are of two main types: in microbial fuel cells micro-organisms convert organic materials into fuels that can be oxidised in electrochemical cells, and in enzymatic fuel cells electricity is produced as a result of the action of an enzyme (a biological catalyst). Fuels that can be used include (1) pure biochemicals such as glucose, (2) hydrogen gas and (3) organic chemicals present in waste water.The Consortium programme involves a unique combination of microbiology, enzymology, electrochemistry, materials science and computational modelling. Key challenges that the Consortium will face include modelling and understanding the interaction of an electrochemical cell and a population of micro-organisms, attaching and optimising appropriate enzymes, developing and studying synthetic assemblies that contain the active site of a natural enzyme, optimising electrode materials for this application, and designing, building and testing novel biological fuel cells.A Biofuel Cells Industrial Club is to be formed, with industrial partners active in water management, porous materials, microbiology, biological catalysis and fuel cell technology. The programme and its outcomes will be significant steps towards producing electricity from materials and techniques originating in the life sciences. The technology is likely to be perceived as greener than use of solely chemical and engineering approaches, and there is considerable potential for spin off in changed technologies (e.g. cost reductions, reduction in the need for precious metals, biological catalysts for production of hydrogen by electrolysis).
more_vert assignment_turned_in Project2006 - 2010Partners:British Telecom, Intel Corporation, Highways Agency, University of Cambridge, Yorkshire Water +13 partnersBritish Telecom,Intel Corporation,Highways Agency,University of Cambridge,Yorkshire Water,Kelda Group (United Kingdom),Highways Agency,Thames Water (United Kingdom),Humber Bridge Board,UNIVERSITY OF CAMBRIDGE,Humber Bridge Board,Cambridge Integrated Knowledge Centre,Thames Water Utilities Limited,BT Group (United Kingdom),LONDON UNDERGROUND LIMITED,Thales Research Ltd,Thales Group,Intel (United States)Funder: UK Research and Innovation Project Code: EP/D076870/1Funder Contribution: 790,234 GBPOne of the greatest challenges facing civil engineers in the 21st century is the stewardship of ageing infrastructure. Nowhere is this more apparent than in the networks of tunnels, pipelines and bridges that lie beneath and above the major cities around the world. Much of this infrastructure was constructed more than half a century ago and there is widespread evidence of its deterioration. Tunnels, particularly old ones, are prone to being influenced by activities such as adjacent construction, for instance piling, deep excavations and other tunnel construction. Excessive leakage and pipe bursts are frequent and usually unanticipated. Importantly, underground structures often cannot be inspected when they are being used by trains or due to other physical constraints. The fragility of old infrastructure also presents a challenge for new construction in congested urban environments. Little is known of the long-term performance of such infrastructure. These uncertainties and the importance of safety to users and consumers prompted the initiation of recent research projects investigating the prospect of damage detection and decision making and the use of novel materials to mitigate damage. Advances in the development of innovative sensors such as fibre optic sensors and micro electrical mechanical sensors (MEMS) offer intriguing possibilities that can radically alter the paradigms underlying existing methods of condition assessment and monitoring. Future monitoring systems will undoubtedly comprise Wireless Sensor Networks (WSN) and will be designed around the capabilities of autonomous nodes. Each node in the network will integrate specific sensing capabilities with communication, data processing and power supply. It is therefore the objective of this proposal to demonstrate how large numbers of sensors can be integrated into large-scale engineering systems to improve performance and extend the lifetime of infrastructure, while continuously evaluating and managing uncertainties and risks. This proposal is a joint project between the University of Cambridge and Imperial College London and comprises an integrated research program to evaluate and develop prototype WSN systems. The main objectives of this proposal are to bridge advances in modelling large-scale engineering infrastructure with advances in wireless sensor networks and to develop a low-cost smart sensing environment for monitoring ageing public infrastructure. Three application domains will be studied in detail: (i) monitoring water supply and sewer systems and (ii) monitoring tunnels and (iii) monitoring bridges. The complexity of the monitoring system requires the following research areas to be explored : sensor systems, wireless communications, autonomous systems, information management, programming and design tools, trust security and privacy, systems theory, human factors and social issues. Field trials will be carried out with London Underground Ltd., Thames Water, Highways Agency and Humber Bridge. Intel Corporation will support the project with hardware for the trials.
more_vert assignment_turned_in Project2015 - 2021Partners:EVONIK INDUSTRIES AG, B P International Ltd, SEVERN TRENT WATER LIMITED, Thames Water (United Kingdom), BP Exploration Operating Company Ltd +25 partnersEVONIK INDUSTRIES AG,B P International Ltd,SEVERN TRENT WATER LIMITED,Thames Water (United Kingdom),BP Exploration Operating Company Ltd,Evonik Industries AG (International),Anglian Water Services Limited,Dr Reddy's Laboratories UK Ltd,BP (UK),Thames Water Utilities Limited,GlaxoSmithKline plc (remove),SW,Pervatech,Evonik (Germany),BGT Materials Ltd,Dr. Reddy's Laboratories (United Kingdom),GlaxoSmithKline (Harlow),SEVERN TRENT WATER,Johnson Matthey plc,Pervatech,GlaxoSmithKline,Scottish Water,Dr. Reddy's Laboratories (India),Johnson Matthey,Anglian Water,Anglian Water,BGT Materials Ltd,Newcastle University,Johnson Matthey Plc,Newcastle UniversityFunder: UK Research and Innovation Project Code: EP/M01486X/1Funder Contribution: 4,508,220 GBPMembranes offer exciting opportunities for more efficient, lower energy, more sustainable separations and even entirely new process options - and so are a valuable tool in an energy constrained world. However, high performance polymeric, inorganic and ceramic membranes all suffer from problems with decay in performance over time, through either membrane ageing (membrane material relaxation) and/or fouling (foreign material build-up in and/or on the membrane), and this seriously limits their impact. Our vision is to create membranes which do not suffer from ageing or fouling, and for which separation functionality is therefore maintained over time. We will achieve this through a combination of the synthesis of new membrane materials and fabrication of novel membrane composites (polymeric, ceramic and hybrids), supported by new characterisation techniques. Our ambition is to change the way the global membrane community perceives performance. Through the demonstration of membranes with immortal performance, we seek to shift attention away from a race to achieve ever higher initial permeability, to creation of membranes with long-term stable performance which are successful in industrial application.
more_vert assignment_turned_in Project2023 - 2025Partners:University of Birmingham, Thames Water Utilities Limited, Linesearch BeforeUdig, Northumbrian Water Group plcUniversity of Birmingham,Thames Water Utilities Limited,Linesearch BeforeUdig,Northumbrian Water Group plcFunder: UK Research and Innovation Project Code: ST/Y00406X/1Funder Contribution: 226,541 GBPBBuried infrastructure systems are vulnerable to meteorological shocks or extreme weather events, such as floods and droughts due to extreme precipitation, as well as extreme temperatures. Such events can lead to soil movement, thermal contraction and expansion, and sinkholes, among other problems. Despite the urgency, our society is not well prepared for the impacts of these shocks on buried infrastructure. Our understanding of where the risk is and how much it is remains poor, because existing risk assessment tools do not comprehensively consider impacts from both flood water and subsurface moisture/temperature variations. The extent to which the UK's buried infrastructure can cope with a significant weather event, or 'shock', is unclear. Such understanding is crucial for developing effective resilience strategies. This project aims to develop a comprehensive weather-related risk assessment framework for buried infrastructure, which include cables and pipes vital to cities and urban lives. The framework will be applied to understand the potential impacts of weather events and climate change on these infrastructures. The project team will also co-develop adaptation measures with stakeholders to increase resilience to these extreme events. The aim will be accomplished through five interrelated work packages. This includes 1) creating a broad-scale modelling methodology for hydrological conditions; 2) identifying current and future hydrological and meteorological scenarios posing risks to buried infrastructure; 3) employing advanced hydrodynamic modelling and vulnerability analysis to understand how buried pipes and cables respond to varying conditions; 4) integrating the developed models and datasets for a comprehensive risk assessment, and 5) co-developing resilience and adaptation strategies with stakeholders. The project is expected to deliver significant societal and economic impacts. By enhancing decision-making capabilities among infrastructure operators and utility companies, the research can lead to fewer service disruptions, potential cost savings, and increased resilience of infrastructure systems in the face of meteorological shocks and climate change. The project leverages expertise across multiple institutions, including the University of Birmingham, UK Centre for Ecology and Hydrology, and British Geological Survey, to address a critical challenge - the resilience of buried infrastructure to meteorological shocks, demonstrating excellent value for money by capitalising on significant investments in models, facilities, and national datasets. The anticipated outcome of this research program, including the tools and data that will be made available on the DAFNI platform, promises long-term value.
more_vert assignment_turned_in Project2019 - 2027Partners:Environmental Monitoring Solutions Ltd, Wetsus, Stantec, Morrison Utility Services, Anglian Water +57 partnersEnvironmental Monitoring Solutions Ltd,Wetsus,Stantec,Morrison Utility Services,Anglian Water,WSP Civils,SEVERN TRENT WATER LIMITED,Scottish Water,NEWCASTLE CITY COUNCIL,University of Oxford,City of Bradford Metropolitan Dist Counc,Yorkshire Water Services Ltd,Welsh Water (Dwr Cymru),United Utilities Water PLC,Queen's University,Newcastle City Council,Network Rail,WSP Group plc UK,Atkins (United Kingdom),Thames Water (United Kingdom),Anglian Water,UK Water Partnership,Morrison Utility Services,EMS Environmental Monitoring Solutions,Typhon Treatment Systems Ltd,Queen's University Canada,Atkins Ltd,[no title available],Datatecnics,Datatecnics,Newcastle City Council,UK Water Partnership,Typhon Treatment Systems Ltd,NWL,Network Rail Ltd,UKWIR,Anglian Water Services Limited,Dalhousie University,Cranfield University,Bradford Council,UK Coll for Res in Infra & Cities UKCRIC,Atkins Ltd,Thames Water Utilities Limited,J Murphy & Sons Limited,WSP Group plc,UK Water Industry Research Ltd (UKWIR),Dwr Cymru Welsh Water (United Kingdom),Stantec UK Ltd,J Murphy & Sons Limited,CRANFIELD UNIVERSITY,Wetsus,Kelda Group (United Kingdom),Hydro International Plc,SEVERN TRENT WATER,DCWW,EMS Environmental Monitoring Solutions,United Utilities (United Kingdom),Northumbrian Water Group plc,United Utilities,Hydro International Plc,SW,Yorkshire WaterFunder: UK Research and Innovation Project Code: EP/S023666/1Funder Contribution: 6,921,100 GBPGlobally, one in four cities is facing water stress, and the projected demand for water in 2050 is set to increase by 55%. These are significant and difficult problems to overcome, however this also provides huge opportunity for us to reconsider how our water systems are built, operated and governed. Placing an inspirational student experience at the centre of our delivery model, the Water Resilience for Infrastructure and Cities (WRIC) Centre for Doctoral Training (CDT) will nurture a new generation of research leaders to provide the multi-disciplinary, disruptive thinking to enhance the resilience of new and existing water infrastructure. In this context the WRIC CDT will seek to improve the resilience of water infrastructure which conveys and treats water and wastewater as well as the impacts of water on other infrastructure systems which provide vital public services in urban environments. The need for the CDT is simple: Water infrastructure is fundamental to our society and economy in providing benefit from water as a vital resource and in managing risks from water hazards, such as wastewater, floods, droughts, and environmental pollution. Recent water infrastructure failures caused by climate change have provided strong reminders of our need to manage these assets against the forces of nature. The need for resilient water systems has never been greater and more recognised in the context of our industrial infrastructure networks and facilities for water supply, wastewater treatment and urban drainage. Similarly, safeguarding critical infrastructure in key sectors such as transport, energy and waste from the impacts of water has never been more important. Combined, resilience in these systems is vitally important for public health and safety. Industry, regulators and government all recognise the huge skills gap. Therefore there is an imperative need for highly skilled graduates who can transcend disciplines and deliver innovative solutions to contemporary water infrastructure challenges. Centred around unique and world leading water infrastructure facilities, and building on an internationally renowned research consortium (Cranfield University, The University of Sheffield and Newcastle University), this CDT will produce scientists and engineers to deliver the innovative and disruptive thinking for a resilient water infrastructure future. This will be achieved through delivery of an inspirational and relevant and end user-led training programme for researchers. The CDT will be delivered in cohorts, with deeply embedded horizontal and vertical training and integration within, and between, cohorts to provide a common learning and skills development environment. Enhanced training will be spread across the consortium, using integrated delivery, bespoke training and giving students a set of unique experiences and skills. Our partners are drawn from a range of leading sector and professional organisations and have been selected to provide targeted contributions and added value to the CDT. Together we have worked with our project partners to co-create the strategic vision for WRIC, particularly with respect to the training needs and challenges to be addressed for development of resilience engineers. Their commitment is evidenced by significant financial backing with direct (>£2.4million) and indirect (>£1.6million) monetary contributions, agreement to sit on advisory boards, access to facilities and data, and contributions on our taught programme.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right