
Nidec Control Techniques Ltd
Nidec Control Techniques Ltd
4 Projects, page 1 of 1
assignment_turned_in Project2023 - 2026Partners:Biffa plc, Scott Bader Company Ltd, Newcastle University, Siemens plc (UK), Nidec Control Techniques LtdBiffa plc,Scott Bader Company Ltd,Newcastle University,Siemens plc (UK),Nidec Control Techniques LtdFunder: UK Research and Innovation Project Code: EP/Y008316/1Funder Contribution: 768,795 GBPIn our successful proposal in the Adventurous Manufacturing round 2 call, we proposed a scalable, inexpensive, commodity materials-based water-based reversible adhesive. This glue needed to be stable for periods of many months and easily applied by the end user. This was achieved and a UK patent was submitted (P340927GB) a year after the project start. The technology is extremely simple; we used emulsion polymerization to synthesize polymer nanoparticles. These were stabilized with polyelectrolytes, either physically adsorbed to, or polymerized from, the nanoparticles. Polyelectrolytes are polymers that are either positively (polycations) or negatively (polyanions) charged. This water-based emulsion forms a film, just like a paint. When a surface coated with a polyanion-stabilized emulsion is brought into contact with another surface coated with a polycation-stabilized emulsion there is good adhesion. This adhesion further improves when the films dry, and, unusually for a water-based adhesive, does not fail in moist and humid environments. However, as intended, the bond does fail in an acidic or alkaline environment. This creates a unique concept in adhesive technologies because the adhesion can be made to fail on demand, which is an important concept for recycling. Furthermore, this is neither a structural adhesive (based on covalent bonds) nor a pressure-sensitive adhesive, and is therefore an entirely new class of glue, which we deem an electrostatic adhesive. The purpose of this proposal is to develop the technology in the following ways: (i) increase the versatility of the technology by administering it as a spray rather than a paint; (ii) increase the speed of debonding by patterning the surface(s) or by reducing the pH difference from neutral at which bonding fails; (iii) developing fully environmentally friendly materials for use in the adhesive; and (iv) making the adhesive conducting so that it can be applied to e-waste, and, in particular, the recycling of printed circuit boards. As part of this fourth work package, the glue will also be adapted for thermal heat management tasks. Electronic components often reach elevated temperatures, and a glue with good thermal conduction that can adhere a heat sink and remain stable at temperatures of ~70 degrees C will be developed. A fifth work package will involve testing the electronic and thermal reversible glue in real-world environments. Some work on the first two of these work packages will be performed before the start of the project, and some work demonstrating the feasibility of an adhesive that is more environmentally friendly than the first formulations has already been performed, e.g., through the addition of epoxidized soybean oil to the formulations. The fourth and fifth work packages represent an entirely new departure for this technology. The challenges facing us are due to this being a disruptive (step-change) technology, and because it is difficult to convince manufacturers to adapt their processes, we need to adapt ours to work with current processes. This is certainly the case for the bottle-labelling industry, which we have initially targeted, and it may also be needed in other industries. By the end of the grant (September 2026), our new glue will be commercially viable for use in industries working in areas such as labelling and packaging, specialist parts (e.g., car manufacture), and electronics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a47d9619a3d72594cab0fdbf4f6b9812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a47d9619a3d72594cab0fdbf4f6b9812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2022Partners:Arup Group Ltd, Loughborough University, Nidec Control Techniques Ltd, Grid Edge Limited, Loughborough University +5 partnersArup Group Ltd,Loughborough University,Nidec Control Techniques Ltd,Grid Edge Limited,Loughborough University,Arup Group,Hoymiles Converter Technology Co., Ltd.,Hoymiles Converter Technology Co., Ltd.,Nidec Control Techniques Ltd,Grid Edge LimitedFunder: UK Research and Innovation Project Code: EP/S001662/2Funder Contribution: 414,346 GBPMicrogrids are small-scale power subsystems that include distributed energy generations, energy storages, and local loads. Microgrid technology will allow the power grid to accept more clean distributed renewable generations. It has great potential to increase the energy efficiency and security, and contribute to one of the UK industrial strategy priority areas "Cheap and Clean Energy". Compared to alternating current (AC) power systems, direct current (DC) power systems has the advantages of simpler control, higher reliability and efficiency, and has gained a continually increasing interest in the last several years. This Fellowship will work together with UK industries to address the challenge of achieving plug-and-play low voltage DC microgrids, provide ease of use for the technology, and explore new business cases in both building and industrial applications. The plug-and-play concept means the DC microgrid stable operation should not be affected by the connection/disconnection of power converters to the system, and the system control algorithm can be updated after a power converter is connected or disconnected. Also, users should have a group of compatible DC microgrid devices to choose from different manufacturers. In this Fellowship, the fundamental mechanism of DC microgrid stability will be studied, and a novel passive interface filter based solution will be implemented, so that off-the-shelf power converters can be used without changing its design. Design guidelines and software tool will be provided for DC microgrid industrial engineers. A novel simultaneous power and information transfer technology will be developed for DC microgrid control, so that high performance plug-and-play control can be implemented without external communication links. Together with industrial project partners, a reconfigurable DC microgrid research and demonstration platform will be developed to evaluate and demonstrate the developed technology, and support industry to explore potential new business cases in building and industrial applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b6475ba6bfd08684256a4193f2abc6d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b6475ba6bfd08684256a4193f2abc6d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2019Partners:Aston University, Arup Group Ltd, Arup Group, Nidec Control Techniques Ltd, Hoymiles Converter Technology Co., Ltd. +5 partnersAston University,Arup Group Ltd,Arup Group,Nidec Control Techniques Ltd,Hoymiles Converter Technology Co., Ltd.,Grid Edge Limited,Hoymiles Converter Technology Co., Ltd.,Grid Edge Limited,Aston University,Nidec Control Techniques LtdFunder: UK Research and Innovation Project Code: EP/S001662/1Funder Contribution: 517,363 GBPMicrogrids are small-scale power subsystems that include distributed energy generations, energy storages, and local loads. Microgrid technology will allow the power grid to accept more clean distributed renewable generations. It has great potential to increase the energy efficiency and security, and contribute to one of the UK industrial strategy priority areas "Cheap and Clean Energy". Compared to alternating current (AC) power systems, direct current (DC) power systems has the advantages of simpler control, higher reliability and efficiency, and has gained a continually increasing interest in the last several years. This Fellowship will work together with UK industries to address the challenge of achieving plug-and-play low voltage DC microgrids, provide ease of use for the technology, and explore new business cases in both building and industrial applications. The plug-and-play concept means the DC microgrid stable operation should not be affected by the connection/disconnection of power converters to the system, and the system control algorithm can be updated after a power converter is connected or disconnected. Also, users should have a group of compatible DC microgrid devices to choose from different manufacturers. In this Fellowship, the fundamental mechanism of DC microgrid stability will be studied, and a novel passive interface filter based solution will be implemented, so that off-the-shelf power converters can be used without changing its design. Design guidelines and software tool will be provided for DC microgrid industrial engineers. A novel simultaneous power and information transfer technology will be developed for DC microgrid control, so that high performance plug-and-play control can be implemented without external communication links. Together with industrial project partners, a reconfigurable DC microgrid research and demonstration platform will be developed to evaluate and demonstrate the developed technology, and support industry to explore potential new business cases in building and industrial applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d3a7a9cb162ac0103b2804bcf7bc6d1e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d3a7a9cb162ac0103b2804bcf7bc6d1e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2027Partners:GAS-UK, Cummins Generator Technologies, PowerelectronicsUK, Dynex Semiconductor (United Kingdom), Institution of Engineering and Technology +37 partnersGAS-UK,Cummins Generator Technologies,PowerelectronicsUK,Dynex Semiconductor (United Kingdom),Institution of Engineering and Technology,Hoganas AB,Dyson Appliances Ltd,GKN Innovation Center,Compound Semiconductor App. Catapult,Cummins Generator Technologies,Protean Electric Limited,GKN Innovation Center,Ricardo (United Kingdom),Newcastle University,Protean Electric Limited,Knowledge Transfer Network,TT Electronics,AVL Powertrain UK Ltd,Advanced Propulsion Centre UK Ltd (APC),Turbopowersystems,Ricardo (United Kingdom),IXYS UK Westcode Ltd,Newcastle University,Dynex Semiconductor (United Kingdom),Changan UK R & D Centre Limited,Anstalt für Verbrennungskraftmaschinen List,Compound Semiconductor App. Catapult,Dyson Limited,AVID Technology Limited,Goodrich Actuation Systems,Knowledge Transfer Network Ltd,AVID Technology Limited,Changan UK R & D Centre Limited,Höganäs (Sweden),TT Electronics,The Institution of Engineering and Tech,Advanced Propulsion Centre,Nidec Control Techniques Ltd,Westcode Semiconductors Ltd,PowerelectronicsUK,Turbo Power Systems (TPS),Nidec Control Techniques LtdFunder: UK Research and Innovation Project Code: EP/S024069/1Funder Contribution: 5,604,540 GBPOver the next twenty years, the automotive and aerospace sector will undergo a fundamental revolution in propulsion technology. The automotive sector will rapidly move away from petrol and diesel engine powered cars towards fully electric propelled vehicles whilst planes will move away from pure kerosene powered jet engines to hybrid-electric propulsion. The automotive and aerospace industry has worked for the last two decades on developing electric propulsion research but development investment from industry and governments was low until recently, due to lag of legislation to significantly reduce greenhouse gases. Since the ratification of the 2016 Paris Agreement, which aims to keep global temperature rise this century well below 2 degrees Celsius, governments of industrial developed nations have now legislated to ban new combustion powered vehicles (by 2040 in the UK and France, by 2030 in Germany and similar legislation is expected soon in China). The implementation of this ban will see a sharp rise of the global electric vehicle market to 7.5 million by 2020 with exponential growth. In the aerospace sector, Airbus, Siemens and Rolls-Royce have announced a 100-seater hybrid-electric aircraft to be launched by 2030 following successful tests of 2 seater electric powered planes. Other American and European aerospace industries such as Boeing and General Electric must also prepare for this fundamental shift in propulsion technology. Every electric car and every hybrid-electric plane needs an electric drive (propulsion) system, which typically comprises a motor and the electronics that controls the flow of energy to the motor. In order to make this a cost-effective reality, the cost of electric drives must be halved and their size and weight must be reduced by up to 500% compared to today's drive systems. These targets can only be achieved by radical integration of these two sub-systems that form an electric drive: the electric motor and the power electronics (capacitors, inductors and semiconductor switches). These are currently built as two independent systems and the fusion of both creates new interactions and physical phenomena between power electronics components and the electric motor. For example, all power electronics components would experience lots of mechanical vibrations and heat from the electric motor. Other challenges are in the assembly of connecting millimetre thin power electronics semiconductors onto a large hundred times bigger aluminium block that houses the electric motor for mechanical strength. To achieve this type of integration, industry recognises that future professional engineers need skills beyond the classical multi-disciplinary approach where individual experts work together in a team. Future propulsion engineers must adopt cross-disciplinary and creative thinking in order to understand the requirements of other disciplines. In addition, they will need an understanding of non-traditional engineering subjects such as business thinking, use of big data, environmental issues and ethical impact. Future propulsion engineers will need to experience a training environment that emphasises both deep subject knowledge and cross-disciplinary thinking. This EPSRC CDT in Power Electronics for Sustainable Electric Propulsion is formed by two of UK's largest and most forward thinking research groups in this field (at Newcastle and Nottingham Universities) and includes 16 leading industrial partners (Cummins, Dyson, CRRC, Protean, to name a few). All of them sharing one vision: To create a new generation of UK power electronics specialists, needed to meet the societal and industrial demand for clean, electric propulsion systems in future automotive and aerospace transport infrastructures.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3492379b24af4d9df2dba5e2b6e75617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3492379b24af4d9df2dba5e2b6e75617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu