
Building Research Establishment (BRE)
Building Research Establishment (BRE)
37 Projects, page 1 of 8
assignment_turned_in Project2007 - 2010Partners:University of Dundee, BRE, Building Research Establishment (BRE), Building Research EstablishmentUniversity of Dundee,BRE,Building Research Establishment (BRE),Building Research EstablishmentFunder: UK Research and Innovation Project Code: EP/E031749/1Funder Contribution: 166,668 GBPSoils display strain rate dependant behaviour which has implications for the understanding of a wide range of geotechnical events. However, the current understanding of the results of varying strain rate on soil behaviour are often ignored in design, field studies, laboratory testing and soil mechanics frameworks. Where previous work to understand rate effects has been undertaken it focuses on relatively low strain rates or narrow ranges of strain rates that do not reflect the rates of field events. In addition several field testing techniques rely on the evaluation of rate effects for analysis. These parameters are often derived from costly field studies or specialised laboratory testing. It is the intention through this proposal to examine the behaviour of fine grained soils over a wide range of strain rates whilst varying soil composition. This approach will identify both behaviour at key strain rates and allow understanding of what the main controlling factors are at soil micro structural level. This will be achieved through the use of high speed monotonic triaxial testing with on-sample strain and pore pressure measurement. In parallel the soils will be characterised using simple standardised laboratory testing techniques. The high strain rate testing and standard testing will then be compared to develop a predictive framework which will allow the determination of soil rate potential from standardised laboratory tests without the need for specialised testing or empirical studies. This research study will lead to improved understanding of what soil properties influence rate effect potential and how to quantify them which will be exploitable by academics and industry alike.
more_vert assignment_turned_in Project2021 - 2024Partners:University of Warwick, FeTu Ltd, CFMS Services Ltd, NEPIC, CRODA EUROPE LTD +97 partnersUniversity of Warwick,FeTu Ltd,CFMS Services Ltd,NEPIC,CRODA EUROPE LTD,EDGE Digital Manufacturing Limited,Industry Wales,Hartree Centre,University of Sheffield,Henry Royce Institute,Liberty Speciality Steels,VESUVIUS UK LTD,Mineral Products Association,Union Papertech Ltd,Tata Steel UK,University of Liverpool,Goodwin Steel Castings,Digital Catapult,EDGE Digital Manufacturing Limited,North East Process Industry ClusterNEPIC,Knowledge Centre for Materials Chemistry,N8 Research Partnership,Industry Wales,AkzoNobel,Glass Futures Ltd,Johnson Matthey Plc,British Ceramic Confederation,Union Papertech Ltd,North East Process Industry ClusterNEPIC,AkzoNobel UK,Northumbria University,British Ceramic Confederation,Building Research Establishment,Sheffield Hallam University,AkzoNobel UK,University of Sheffield,British Glass,Aluminium Federation Ltd,British Steel Ltd,Goodwin Steel Castings,North West Business Leadership Team,Sheffield Forgemasters Engineering Ltd,Johnson Matthey,Celsa Steel UK,BRE,IOM3,Henry Royce Institute,N8 Research Partnership,FeTu Ltd,Confederation of Paper Industries,Lucideon Ltd,University of Liverpool,Confederation of Paper Industries,University of Warwick,James Cropper Plc,Vesuvius UK,British Glass,British Coatings Federation,Policy Connect,Tata Steel,Imerys,Knowledge Centre for Materials Chemistry,Materials Processing Institute (MPI),Liberty Steel UK,Ferroday Ltd,British Glass,UK Steel,British Coatings Federation,Hartree Centre,[no title available],IoM3,Breedon Cement Ltd,Aluminium Federation Ltd,Northumbria University,Imerys,Mineral Products Association,Glass Futures Ltd,James Cropper Plc,CRODA EUROPE LIMITED,Johnson Matthey plc,UK Steel,Connected Digital Economy Catapult,Tata Steel (United Kingdom),Croda (United Kingdom),Building Research Establishment (BRE),Ferroday Ltd,Celsa Steel UK,CERAM Research,PYROPTIK INSTRUMENTS LIMITED,North West Business Leadership Team,LKAB Minerals Ltd,CFMS Services Ltd,Policy Connect,Sheffield Forgemasters Engineering Ltd,LKAB Minerals Ltd,Breedon Cement Ltd,Science and Technology Facilities Council,PYROPTIK INSTRUMENTS LIMITED,Materials Processing Institute (MPI),CFMS Ltd,SHU,British Steel LtdFunder: UK Research and Innovation Project Code: EP/V026402/1Funder Contribution: 2,259,080 GBPThe UK Foundation Industries (Glass, Metals, Cement, Ceramics, Bulk Chemicals and Paper), are worth £52B to the UK economy, produce 28 million tonnes of materials per year and account for 10% of the UK total CO2 emissions. These industries face major challenges in meeting the UK Government's legal commitment for 2050 to reduce net greenhouse gas emissions by 100% relative to 1990, as they are characterised by highly intensive use of both resources and energy. While all sectors are implementing steps to increase recycling and reuse of materials, they are at varying stages of creating road maps to zero carbon. These roadmaps depend on the switching of the national grid to low carbon energy supply based on green electricity and sustainable sources of hydrogen and biofuels along with carbon capture and storage solutions. Achievement of net zero carbon will also require innovations in product and process design and the adoption of circular economy and industrial symbiosis approaches via new business models, enabled as necessary by changes in national and global policies. Additionally, the Governments £4.7B National Productivity Investment Fund recognises the need for raising UK productivity across all industrial sectors to match best international standards. High levels of productivity coupled with low carbon strategies will contribute to creating a transformation of the foundation industry landscape, encouraging strategic retention of the industries in the UK, resilience against global supply chain shocks such as Covid-19 and providing quality jobs and a clean environment. The strategic importance of these industries to UK productivity and environmental targets has been acknowledged by the provision of £66M from the Industrial Strategy Challenge Fund to support a Transforming Foundation Industries cluster. Recognising that the individual sectors will face many common problems and opportunities, the TFI cluster will serve to encourage and facilitate a cross sectoral approach to the major challenges faced. As part of this funding an Academic Network Plus will be formed, to ensure the establishment of a vibrant community of academics and industry that can organise and collaborate to build disciplinary and interdisciplinary solutions to the major challenges. The Network Plus will serve as a basis to ensure that the ongoing £66M TFI programme is rolled out, underpinned by a portfolio of the best available UK interdisciplinary science, and informed by cross sectoral industry participation. Our network, initially drawn from eight UK universities, and over 30 industrial organisations will support the UK foundation industries by engaging with academia, industry, policy makers and non-governmental organisations to identify and address challenges and opportunities to co-develop and adopt transformative technologies, business models and working practices. Our expertise covers all six foundation industries, with relevant knowledge of materials, engineering, bulk chemicals, manufacturing, physical sciences, informatics, economics, circular economy and the arts & humanities. Through our programme of mini-projects, workshops, knowledge transfer, outreach and dissemination, the Network will test concepts and guide the development of innovative outcomes to help transform UK foundation industries. The Network will be inclusive across disciplines, embracing best practice in Knowledge Exchange from the Arts and Humanities, and inclusive of the whole UK academic and industrial communities, enabling access for all to the activity programme and project fund opportunities.
more_vert assignment_turned_in Project2006 - 2008Partners:UKWIR, Birmingham City Council, Government Office West Midlands, Birmingham City Council, University of Birmingham +29 partnersUKWIR,Birmingham City Council,Government Office West Midlands,Birmingham City Council,University of Birmingham,BRE,RSWT,Science and Technology Facilities Council,Government Office West Midlands,Arup Group Ltd,Ove Arup & Partners Ltd,Carbon Trust,Building Research Establishment,BIRMINGHAM CITY COUNCIL,BCSD (UK),Building Research Establishment (BRE),MADE,BCSD (UK),UK Water Industry Research Ltd (UKWIR),South East England Regional Assembly,The Carbon Trust,ISIS,WILDLIFE TRUST FOR BIRMINGHAM,MARTINEAU JOHNSON,Advantage West Midlands,ISIS,Royal Inst of British Architects RIBA,MARTINEAU JOHNSON,South East England Regional Assembly,University of Birmingham,Royal Institute of British Architects,MADE,UK Water Industry Research Ltd,Advantage West MidlandsFunder: UK Research and Innovation Project Code: EP/E021603/1Funder Contribution: 512,891 GBPThe aim of the Sustainable Eastside Project is to explore how sustainability is addressed in the regeneration decision-making process, and to assess the sustainability performance of completed development schemes in Birmingham Eastside against stated sustainability credentials and aspirations. The incorporation of sustainability into an urban regeneration program, such as Birmingham Eastside, appears best conceptualised as a complex decision-making process carried out by stakeholders who are embedded within the development process. The barriers to and enablers of sustainability (as identified in Phase I of this project) appear at various moments or locations within this complex. The timing and context of decisions are critical (examined in Phase II), and can cause path-dependency which then limits how sustainability features in final development plans. In Phases I & II, the research set in place a framework of cross-disciplinary knowledge and key partnerships; highlighted the importance of coherent integration of the three pillars of sustainability to enable the complexity of achieving urban sustainability to be sufficiently grappled with; gained access to key decision-making forums in Eastside; built strong links with key stakeholders in the area; and firmly integrated into the policy agenda for Eastside. In addition, researchers are working to establish a cross-cutting baseline dataset of developments in Eastside rigorously to measure change over time and the impact of particular decisions on the sustainability of the overall urban regeneration programme. In so doing the foundations for a zonal urban regeneration case study site are being established, augmented by the creation of a study facility, with library and hot desking, now available for researchers from SUE / IEP consortia, to study the application of research to practice. The emerging findings of Phase II have allowed researchers to develop a series of hypotheses about the timing of decisions for sustainability in a range of decision-making forums, and the extent to which path-dependency becomes problematic. In Phase III, a suite of innovative analytical tools will be employed to elucidate further the complexities and interactions of the key elements of the sustainability vision for Eastside. First, a Development Timeline Framework (DTF), a multi-disciplinary tool that makes explicit the path dependency of decisions toward achieving sustainability goals, and the conflicts and synergies between different sustainability objectives, will be used as the basis for further research. Second, a cross-cutting Sustainability Checklist (SC) applied to the DTF will allow each researcher to analyse the impact of timing and context of decisions for each sustainability element (e.g. biodiversity, public participation, space utilisation, local sourcing, and recycling). Third, an Industrial Ecology (IE) analysis will follow particular resources (e.g. water, aggregates) thus highlighting their interdependence, while a Social Impact Assessment (SIA) approach will enable assessment of the socio-cultural aspects of sustainability (not covered by the IE approach). This suite of tools underpins the delivery of the work package aims. This analysis will be undertaken on a case history site basis, using development sites within Eastside that are all currently 'live,' each site representing a different conceptualisation of sustainability. This provides a unique opportunity to evaluate the specific impact of early thinking about sustainability in the planning and design stages, and the impact of this timing and path-dependency on sustainability performance in the final built form.
more_vert assignment_turned_in Project2009 - 2012Partners:Harrogate Borough Council, Harrogate Borough Council, JRF, CIRIA, BRE +7 partnersHarrogate Borough Council,Harrogate Borough Council,JRF,CIRIA,BRE,Warm Wales - Cymru Gynnes CBC,Building Research Establishment,Building Research Establishment (BRE),Warm Wales - Cymru Gynnes CBC,CIRIA,Joseph Rowntree Foundation,UCLFunder: UK Research and Innovation Project Code: EP/G000395/1Funder Contribution: 2,094,700 GBPOur vision is to engage users in the design of control systems they like, that allow them to create the comfort conditions they want, and which through using the technology and fabric of their homes more effectively, reduces their energy use by 20%. We want to design and test these control systems in a way that complies with utilities' CERT-2 obligations, and provide design, installation and maintenance guidance which allows others to learn from our work and apply it more widely. We estimate this has the potential to save around 3 MT CO2 annually.Homes use about a third of the UK's energy, and produce about a third of all CO2 emissions. Because of the low rates of demolition, and the difference in efficiency between new and old houses, even if every house built from now to 2050 was zero-carbon, the total emissions from the UK housing stock would stay roughly the same. Any significant reductions must come from existing homes. In existing homes, making them comfortable (primarily through heating) uses around two thirds of their energy and carbon. We also know that how occupants' make their home comfortable, through use of the heating system, doors, windows, lighting, the clothes they wear, etc, has an enormous effect on energy use. Identical homes, with different occupants, can vary in energy use by a factor of two to three. Driving your home well can reduce your carbon footprint much more than installing wind turbines or solar panels. Currently, driving your home well is very hard to do. There's almost no feedback on the effect of leaving the bedroom window open at night, or having your thermostat at 21 C rather than 19 C. A quarterly energy bill provides almost no help so occupants' are currently 'driving blind' when it comes to saving energy or reducing their carbon footprint. This project aims to give them something to see with / forms of feedback on the energy costs of their actions which are immediate and in a form they themselves want. We will work with occupants, in their own homes, to understand what they would find useful. Using an action research approach and user centred design methods, we will understand their day to day comfort practices (i.e. how they drive their home) and design systems to help them drive it better, better in terms of comfort, spending less on energy and reducing their carbon footprint. Previous studies show that relatively simple forms of feedback, such as an LCD display showing instantaneous energy use, can help people save 5 to 15%. While these displays are good, they usually only display the total electricity used in the home, not on individual appliances, and they only provide information. In order for people to make changes they need three things: feedback (information on energy use); motivation (the desire to reduce energy use) and choice (the ability to act differently). There is scope to design technologies that provide all three of these - to provide occupants with systems for control that tell them what is using energy, what choices they have to use less, and do to so in a way they like to engage with. An approach targeting all three of these issues, and engaging users throughout the design process, has not been tried before but given previous studies, savings of 20% could reasonably be expected. The research is highly interdisciplinary and is based in field work involving lots of monitoring to ensure the technologies work and deliver real, measurable savings. The research team is a balance of technologists and social researchers and through working closely with householders, utilities and housing providers, we feel we can make a real contribution to understanding how people use energy to make their homes comfortable, and to develop control systems that can help them do this more effectively while saving on energy costs and reducing their carbon footprint.
more_vert assignment_turned_in Project2006 - 2011Partners:Mace Ltd, Xaar Americas Inc, TATA Motors Engineering Technical Centre, 3T RPD Ltd, Olivetti I-Jet +376 partnersOnly 199 Partners of A Centre for Innovative Manufacturing and Construction are shown here.Mace Ltd,Xaar Americas Inc,TATA Motors Engineering Technical Centre,3T RPD Ltd,Olivetti I-Jet,SODA Project,Krause Automation,Motor Insurance Repair Research Centre,Ricardo UK,3D Systems Inc,Rolls-Royce Plc (UK),Hapold Consulting Ltd,Tesco,Bafbox Ltd,NCAR,Charnwood Borough Council,ArvinMeritor Automotive Light Vehicle,Autoliv Ltd,StubbsRich Ltd,Rim-Cast,SIEMENS PLC,CMP Batteries Ltd,Rozone Limited,Jaguar Cars,ManuBuild,Bafbox Ltd,National Physical Laboratory NPL,IPLON GMBH - THE INFRANET COMPANY,BT Group Property,Inst for Surface and Boundary Layers,Charnwood Borough Council,SODA Project,Boeing Co,Marylebone Cricket Club,AMEC,Huntleigh Healthcare Ltd,Delcam International plc,Terraplana,UK Sport,ITESM,Georgia Institute of Technology,Head Sport AG,TRW Conekt,Marden Edwards Ltd,Steel Construction Institute,Autoliv Ltd,Mouchel Parkman,EMDA,InfoVision Systems Ltd.,Ontology Works Inc,Exide Technologies,Collins and Aikman Ltd,Leicester Glenfield Hospital,Rozone Limited,Textile Recycling Association,BPB plc,John Laing Plc,Development Securities Plc,Giddings and Lewis INC,Collins and Aikman Ltd,Licensing Executive Society Intl LESI,TNO Industrial Technology,Schneider Electric (Germany),Laser Optical Engineering Ltd,Scott Wilson Ltd,Wates Construction,Fully Distributed Systems (United Kingdom),TRW Conekt,ThyssenKrupp Krause GmbH,BRE Group (Building Res Establishment),GlaxoSmithKline (Harlow),3T Additive Manufacturing Ltd,Hopkinson Computing Ltd,Econolyst Ltd,Lend Lease,Marylebone Cricket Club,Aptiv (United Kingdom),TNO Industrial Technology,Toyota Motor Europe,NPL,Novel Technical Solutions,BAE Systems,Leicestershire County Cricket Club,FORD MOTOR COMPANY LIMITED,Motor Industry Research Assoc. (MIRA),BT Group Property,Shepherd Construction Ltd,Capita,GSK,Bae Systems Defence Ltd,Cross-Hueller Ltd,CWV Group Ltd,In2Connect Ltd,Engage GKN,Datalink Electronics,Penn State University College of Medicin,Goodrich Actuation Systems,Siemens PLMS Ltd,Dept for Env Food & Rural Affairs DEFRA,LOE,Lawrence M Barry & Co,Birmingham City Council,Nike,The European Recycling Company,British Gypsum Ltd,Arup Group,John Laing Plc,Siemens Transportation,Boeing Co,Lenze UK Ltd.,Renishaw plc (UK),North West Aerospace Alliance,STI,Ove Arup & Partners Ltd,Regentec Limited,Let's Face It,Huntsman Advanced Materials UK Ltd,National Centre for Atmospheric Research,The European Recycling Company,Capita Symonds,Delphi Diesel Systems Ltd,B H R Group Ltd,Mace Ltd,Buro Happold,Leicestershire County Cricket Club,Pentland Group plc,Rover Group Ltd,ArvinMeritor Automotive Light Vehicle,CSC (UK) Ltd,GlaxoSmithKline PLC,AMEC,BT Group,Capita Symonds,Fergusons Irish Linen & Co.Ltd,Diameter Ltd,Clarks,Edwards,Invotec Group LTD,3D Systems Inc,CSC (UK) Ltd,Ordnance Survey,Z Corporation,In2Connect Ltd,Lamb Technicon UK,TAP Biosystems,Shotcrete,Schneider Electric (France),Reid Architecture,Engage GKN,Beta Technology Limited,adidas-Salomon AG,Bosch Rexroth Corporation,InfoVision Systems Ltd.,MG Rover Group Ltd,Singapore Institute of Mfg Technology,Huntsman (United Kingdom),Qioptiq Ltd,RENISHAW,Clarks,Simons Design,World Taekwondo Federation,CIRIA,Penn State University,Sulzer Chemtech (UK) Ltd,GAS-UK,Loughborough University,PIRA,Clamonta Ltd,Laser Optical Engineering,Real-Time Innovations,Bovis Lend Lease,Helm X,NTU,Emergent Systems,TRA,Parker Hannifin Plc,Faber Maunsell,Dunlop Slazenger,Rojac Patterns Ltd,DEGW,Delphi Diesel Systems,Toyota Motor Europe NV SA,Rim-Cast,Buildoffsite,Reid Architecture,Rexroth Bosch Group,GE Aviation,Schneider Electric GmbH,S M M T,Putzmeister UK,AECOM,Mott Macdonald (United Kingdom),Ford Motor Company,Smithers Pira,BIRMINGHAM CITY COUNCIL,SCI,Ontology Works Inc,Monterrey Institute of Technology,SMRE,URS/Scott Wilson,Coventry University,Zytek Group Ltd,Webster Components Ltd,Interserve Project Services Ltd,Mott Macdonald UK Ltd,University of Nottingham,East Midlands Development Agency,ThyssenKrupp Krause GmbH,VTT ,Krause Automation,Datalink Electronics,TME,RTI,National Cricket Centre,The DEWJOC Partnership,MCP Equipment,Ford Motor Company,Sulzer Chemtech (UK) Ltd,VTT Technical Research Centre of Finland,Econolyst Ltd,BAE Systems (Sweden),Solidica Corp,Delcam International plc,Putzmeister UK,Lawrence M Barry & Co,Knibb Gormezano & Partners,Nottingham University Hospitals Charity,Fergusons Irish Linen & Co.Ltd,adidas Group (International),Nike,British Telecom,OS,National Ctr for Atmospheric Res (NCAR),Pentland Group plc,MCP Equipment,National Cricket Centre,Hopkinson Computing Ltd,Z Corporation,Interserve Project Services Ltd,Tesco,Critical Pharmaceuticals,Terrapin Ltd,TAP Biosystems,Simons Design,Rolls-Royce (United Kingdom),Delcam (United Kingdom),Mechan Ltd,World Taekwondo Federation,New Balance Athletic Shoes,Fraunhofer -Institut für Grenzflächen-,JAGUAR LAND ROVER LIMITED,Xaar Americas Inc,CIRIA,EMCBE and CE,Zytek Group Ltd,RFE International Ltd,JCB Research Ltd,EOS,Dunlop Slazenger,Saint-Gobain Weber Ltd,MIRA Ltd,Invotec Circuits,Parker Hannifin Plc,Environment Agency,Aptiv (Ireland),Prior 2 Lever,UK Sport,Nottingham Uni Hospitals NHS Trust,CWV Group Ltd,BAE Systems (United Kingdom),Building Research Establishment (BRE),Exide Technologies (United Kingdom),Highbury Ltd,CRITICAL PHARMACEUTICALS,Novel Technical Solutions,Giddings and Lewis INC,Lenze UK Ltd.,University Hospitals of Leicester NHS Trust,Soletec Ltd,SAIC,CSW Group,JCB Research Ltd (to be replaced),M I Engineering Ltd,USC,AMTRI,Health and Safety Executive (HSE),Surface Technology International Ltd,EMCBE and CE,Singapore Institute of Manufacturing Tec,Buro Happold Limited,HEAD Sport GmbH,University of Southern California,URS Corporation (United Kingdom),Buildoffsite,Mechan Ltd,Smmt Industry Forum,Fully Distributed Systems Ltd,Clamonta Ltd,Rojac Patterns Ltd,Arup Group Ltd,AMTRI,Mowlem Plc,Smmt Industry Forum,StubbsRich Ltd,Solidica Corp,DEGW,TLON GmbH - The Infranet Company,BT Group,Boeing (International),DEFRA Environment Agency,British Gypsum Ltd,Beta Technology Ltd,Birmingham City Council,Edwards,Rohm and Haas Electronic Materials Ltd,Mouchel Parkman,Siemens Transportation,Mouchel Group,Terrapin Ltd,Terraplana,Nottingham University Hospitals Trust,London Borough of Bromley Council,Galorath Affiliates Ltd,VTT Technical Research Centre of Finland,Galorath Affiliates Ltd,Mowlem Plc,Coventry University,Health and Safety Executive,Huntsman Advanced Materials UK Ltd,Huntleigh Healthcare Ltd,Development Securities Plc,PSU,Prior 2 Lever,Henkel Loctite Adhesives Ltd,Locate Bio (United Kingdom),Shepherd Construction Ltd,Motor Insurance Repair Research Centre,TRW Automotive Technical Centre,Faber Maunsell,SAIC,Webster Components Ltd,Loughborough University,CSW Group,Saint-Gobain Weber Ltd,ME Engineering Ltd,Helm X,New Balance Athletic Shoes,Jaguar Cars,S M M T,Henkel Loctite Adhesives Ltd,The DEWJOC Partnership,London Borough of Camden,RFE International Ltd,GT,Emergent Systems,North West Aerospace Alliance,GE (General Electric Company) UK,Lamb Technicon UK,Hapold Consulting Ltd,Next Plc,Olivetti I-Jet SpA,L S C Group Ltd,ManuBuild,BPB plc,Knibb Gormezano & Partners,QinetiQ,Bosch Rexroth Corporation,Next Plc,SIT,Manchester City Football Club,TRW Automotive Technical Centre,MIRA LTD,Rohm and Haas Electronic Materials Ltd,École Centrale de Lille,Cross-Hueller Ltd,Rolls-Royce (United Kingdom),Let's Face It,Manchester City Football Club,EOS GmbH - Electro Optical Systems,Shotcrete,SOLARTECH LTDFunder: UK Research and Innovation Project Code: EP/E002323/1Funder Contribution: 17,848,800 GBPThe Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right