Powered by OpenAIRE graph
Found an issue? Give us feedback

OINT

OXFORD INSTRUMENTS NANOTECHNOLOGY TOOLS LIMITED
Country: United Kingdom
16 Projects, page 1 of 4
  • Funder: European Commission Project Code: 825272
    Overall Budget: 3,832,150 EURFunder Contribution: 3,832,150 EUR

    Distributed and networked gas sensing is increasingly important for industrial, safety and environmental monitoring applications. Optical nondispersive infrared (NDIR) gas sensors offer the highest sensitivity, stability and specificity in the market, but for most applications, the existing sensors are too bulky and expensive. To enable the broad utilization of high-performance gas sensor networks, there is a critical need for small, low-power and networked gas sensor systems. In ULISSES, we will develop an integrated multi- channel optical gas sensor system-on-a-chip (SoC) and demonstrate its capability to detect three gases simultaneously. Furthermore, we will develop the networking technology required to bring these SoCs onto the Internet of Things (IoT). We will implement a new edge-computed self-calibration algorithm that leverages node-to-node communications to eliminate the main cost driver of low-cost gas sensor fabrication and maintenance (the calibration). Finally, ULISSES will deliver the wafer-scale mass production methods necessary to enable production volumes of millions of sensors per year, and thus provide an order of magnitude reduction of sensor module cost. By leveraging recent breakthroughs of the ULISSES partners on waveguide integrated 2D materials-based photodetectors, 1D nanowire mid-IR emitters, and mid-IR waveguide-based gas sensing using MEMS-tunable filters, we target a three-order-of-magnitude reduction in sensor power consumption, thus permitting maintenance-free battery powered operation for the first time. Between the participants, we cover the full range of competences required for the task. The market for low cost IoT gas sensors is in its infancy, but at a 7.3% compound annual growth rate (CAGR) it is lucrative enough for players with older less specific gas sensor technologies to fight for gaining a first mover advantage. Thus, the window of opportunity for a new disruptive entry into this market is rapidly closing.

    more_vert
  • Funder: European Commission Project Code: 820505
    Overall Budget: 2,999,600 EURFunder Contribution: 2,999,600 EUR

    The mission of QMiCS is to combine European expertise and lead the efforts in developing novel components, experimental techniques, and theory models building on the quantum properties of continuous-variable propagating microwaves. QMiCS’ long-term visions are (i) distributed quantum computing & communication via microwave quantum local area networks (QLANs) and (ii) sensing applications based on the illumination of an object with quantum microwaves (quantum radar). With respect to key quantum computing platforms (superconducting circuits, NV centers, quantum dots), microwaves intrinsically allow for zero frequency conversion loss since they are the natural frequency scale. They can be distributed via superconducting cables with surprisingly little losses, eventually allowing for quantum communication and cryptography applications. Radar works at gigahertz frequencies because of the atmospheric transparency windows anyways. Scientifically, QMiCS targets a QLAN demonstration via quantum teleportation, a quantum advantage in microwave illumination, and a roadmap to real-life applications for the second/third phase of the QT Flagship. Beneath these three grand goals lies a strong component of disruptive enabling technology provided by two full and one external industry partner: the development of a microwave QLAN cable connecting the millikevin stages of two dilution refrigerators, improved cryogenic semiconductor amplifiers, and packaged pre-quantum ultrasensitive microwave detectors. The resulting "enabling" commercial products are beneficial for quantum technologies at microwave frequencies in general. Finally, QMiCS fosters awareness in industry about the revolutionary business potential of quantum microwave technologies, especially via the advisory third parties “Airbus Defence and Space Ltd” and “Cisco Systems GmbH”. In this way, QMiCS helps placing Europe at the forefront of the second quantum revolution and kick-starting a competitive European quantum industry.

    more_vert
  • Funder: European Commission Project Code: 951714
    Overall Budget: 2,904,360 EURFunder Contribution: 2,904,360 EUR

    The magnetic field is a powerful thermodynamic parameter to influence the state of any material system and such is an outstanding experimental tool for physics. To go beyond the conventional commercially available superconducting (SC) magnets, very large infrastructures such as the ones gathered within the European Magnetic Field Laboratory (EMLFL) are necessary. EMFL provides access to static resistive magnets (up to 38 T) and pulsed non-destructive (up to 100 T) and semi-destructive (up to 200 T) magnets for all qualified European researchers. Some recent advances open the way for the implementation of high temperature superconductor (HTS) magnets at the EMFL facilities. The SuperEMFL design study aims to add through the development of the HTS technology an entirely new dimension to the EMFL that go beyond the commercial offer, providing the European high field user community with much higher SC fields and novel SC magnet geometries, like large-bore-high-flux magnets or radial access magnets. The development of SC magnets that can partly replace current high-field resistive magnets will result in a significant reduction of the energy consumption of the static field EMFL facilities. This will strongly improve EMFL’s financial and ecological sustainability and at the same time boost its scientific performance and impact. The high field values, the very low noise and vibration levels, and the possibility to run very long duration experiments will make high SC magnetic fields attractive to scientific communities that so far have rarely used the EMFL facilities (NMR, scanning probe, Fourier transform infrared spectroscopies, ultra-low temperature physics, electro-chemistry …). All these new research possibilities will strengthen the scientific performance, efficiency and attractiveness of the EMFL and thereby of the European Research Area (ERA). The implementation of this strategy should therefore be considered as a major upgrade of the EMFL.

    more_vert
  • Funder: European Commission Project Code: 766974
    Overall Budget: 501,098 EURFunder Contribution: 501,098 EUR

    The CERN’s projects, HL-LHC and FCC, will create a big push in the state of the art of High-Field Superconducting magnets in the ten coming years. The performance of superconducting materials such as Nb3Sn and HTS will be developed to yield higher performance at lower costs and the construction materials and techniques will be advanced. At the same time, in the context of Energy’s savings, Industry is experiencing a renewed interest in the domain of industrial superconductivity with fault current limiters, wind generators, electric energy storage, etc. Besides, Medical Research shows a strong interest in High-Field MRI, especially for the brain observation. Considering the social impact of the investment of the HL-LHC project and FCC study, CERN and CEA have established a Working Group on Future Superconducting Magnet Technology (FuSuMaTech).The Working Group has explored a large spectrum of possible synergies with Industry, and has proposed a set of relevant R&D&I projects to be conducted between Academia and industry. To keep the leading position of Europe in the domain, the most efficient way is to support joint activities of Industry and academic partners on the common concerns in view of overcoming the technological barriers. The FuSuMaTech Initiative aims to create the frame of collaborations and to provide common tools to all the EU actors of the domain. The FuSuMatech Initiative is a dedicated and large scale silo breaking programme which will create a sustainable European Cluster in applied Superconductivity. It will enlarge the innovative potential especially in High Field NMR and MRI, opening future breakthroughs in the brain observation. The FuSuMaTech Phase 1 is the first step of the FuSuMaTech Initiative. It is based on practical cases studies and will consist in preparing: 1. The administrative and legal conditions; 2. The detailed description of generic R&D&I actions and of the Technology demonstrators; 3. The funding scheme for the future actions.

    more_vert
  • Funder: European Commission Project Code: 101189797
    Overall Budget: 32,997,600 EURFunder Contribution: 32,997,600 EUR

    Building on the foundation of the 2D-Experimental Pilot line project (2D-EPL), the 2D-Pilot line project, 2D-PL, has the ambition to further strengthen the European ecosystem in the development of the relevant integration modules for offering prototyping services in the field of photonics and electronics, working on the maturation of the technology, and providing essential information aiding industrial uptake. The main objective of the pilot line is to further mature 2DM fabrication in an industrially relevant FAB environment to secure the 2D pilot line access. The service offerings include the preparation of relevant process design kits (PDKs) and multi-project wafer (MPW) run offerings, which are an essential part of this project's outreach plan. The large application space for 2DM and the broad differentiation for material property requirements make the development of such a pilot line very challenging. Therefore, within the scope of the 2D-PL project, the focus for module maturation is tailored towards the photonic and electronic devices and circuits reaching academic institutions, research centres, SMEs, and larger businesses.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.