Powered by OpenAIRE graph
Found an issue? Give us feedback

EPAL,SA

EPAL-EMPRESA PORTUGUESA DAS ÁGUAS LIVRES, SA
Country: Portugal
4 Projects, page 1 of 1
  • Funder: European Commission Project Code: 641739
    Overall Budget: 7,822,420 EURFunder Contribution: 7,822,420 EUR

    The water sector needs improved climate prediction and downscaling based on consistent grounds (IPCC 5th Assessment Report, 2013). There is also a need for near future weather scenarios and anticipation of their impacts in the water cycle together with risk management strategies. BINGO will provide demand-driven solutions for a number of specific climate-related challenges in particular for highly vulnerable water resources of strategic importance. Water managers and other stakeholders will then be provided with information on specific climate scenarios at the space/time resolution fitting their needs, enabling them to act at various geographical levels (local, regional and European). BINGO aims at reducing the uncertainty of climate predictions and developing response strategies to help society manage that uncertainty. An innovative approach consists of enrolling end-users from the start, identifying specific vulnerabilities, needs and concerns about future climate. BINGO is built around 7 research sites in Northern and Southern Europe, covering a representative range of climatic conditions as well as combinations of water systems and water pressures. They illustrate a variety of water cycles at local/regional scales in Europe over various timescales, as well as common problems, including floods and droughts; water quality pressured by CSO, agriculture and competing demands for water (urban/tourism; agriculture/food security; hydropower). To guarantee sound management strategies for future weather challenges, BINGO will develop and validate all solutions built by strong dynamic interaction of researchers with end-users and decision makers throughout the project. By creating such knowledge alliances, water managers and other stakeholders can share awareness of climate challenges, thus increasing the possibilities of collaboration in order to manage and better cope with future climate challenges.

    more_vert
  • Funder: European Commission Project Code: 730349
    Overall Budget: 3,377,920 EURFunder Contribution: 2,996,690 EUR

    RES URBIS aims at making it possible to convert several types of urban bio-waste into valuable bio-based products, in an integrated single biowaste biorefinery and by using one main technology chain. This goal will be pursued through: - collection and analysis of data on urban bio-waste production and present management systems in four territorial clusters that have been selected in different countries and have different characteristics. - well-targeted experimental activity to solve a number of open technical issues (both process- and product-related), by using the appropriate combination of innovative and catalogue-proven technologies. - market analysis whitin several economic scenarios and business models for full exploitation of bio-based products (including a path forward to fill regulatory gaps). Urban bio-waste include the organic fraction of municipal solid waste (from households, restaurants, caterers and retail premises), excess sludge from urban wastewater treatment, garden and parks waste, selected waste from food-processing (if better recycling options in the food chain are not available), other selected waste streams, i.e. baby nappies. Bio-based products include polyhydroxyalkanoate (PHA) and related PHA-based bioplastics as well as ancillary productions: biosolvents (to be used in PHA extraction) and fibers (to be used for PHA biocomposites). Territorial and economic analyses will be done either considering the ex-novo implementation of the biowaste biorefinery or its integration into existing wastewater treatment or anaerobic digestion plants, with reference to clusters and for different production size. The economic analysis will be based on a portfolio of PHA-based bioplastics, which will be produced at pilot scale and tested for applications: - Biodegradable commodity film - Packaging interlayer film - Speciality durables (such as electronics) - Premium slow C-release material for ground water remediation

    more_vert
  • Funder: European Commission Project Code: 244232
    more_vert
  • Funder: European Commission Project Code: 604069
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.