
Caterpillar (United States)
Caterpillar (United States)
6 Projects, page 1 of 2
assignment_turned_in Project2010 - 2013Partners:3DX-Ray (United Kingdom), Caterpillar (United States), 3D X-Ray Ltd, Caterpillar UK Ltd, Loughborough University +2 partners3DX-Ray (United Kingdom),Caterpillar (United States),3D X-Ray Ltd,Caterpillar UK Ltd,Loughborough University,Loughborough University,3D X-Ray LtdFunder: UK Research and Innovation Project Code: EP/H024492/1Funder Contribution: 500,248 GBPThe project will research a radically new approach to cleaning surfaces that uses pulsed electric discharges to efficiently regenerate engine exhaust particulate filters. It has class-leading features that make it potentially both commercially and technically very attractive.IC engines are the major source of motive power in the world, a fact that is expected to continue well into this century. Whilst diesel engines emit low CO2 emissions, and have good fuel economy and good durability, they emit significant amounts of particulate matter (PM) emissions that are potentially harmful. Engine and vehicle legislation introduced in the EU, US and Asia can only be achieved with the use of diesel particulate filters (DPFs) with further reductions proposed for 2013. Without regular cleaning (regeneration) DPFs become clogged after about 150 miles of vehicle operation leading to a high exhaust back-pressure on the engine, resulting in poor performance and fuel economy. Whilst current DPFs yield >95% reductions in PM by forcing the gas stream through a porous ceramic wall, to-date the regeneration systems suffer from high power consumption, unreliability, unacceptably high cost and limited choice of materials, or are simply too bulky and complex. The step-change in regeneration technology proposed here will achieve a more ideal system and could enable wider application of DPFs to a greater number of engines and applications.The research proposed here will achieve the advantages of a non-thermal non-oxidative regeneration system without either the sensitivity to filter geometry and pore structure or a prohibitively high power consumption, bulky, heavy and noisy regeneration system. The new concept uses pulsed electric discharges to rapidly and very efficiently remove the PM from the filter surface without oxidation. Preliminary results suggest that shock waves produced by pulsed electric discharges within the filter overcome surface forces to break the bond of the PM with the filter surface using as little as 10 W electrical power for a whole filter. The combined effect of the pressure waves within the filter and the electric field accompanying the discharge break up the agglomerated particulates and allow efficient removal of the PM from the filter using a small reverse flow. The PM is then captured in a container, from where it can be subsequently destroyed, e.g. by a robust and easily controlled electric heater, or compacted and stored, reducing carbon emissions. The result is the rapid, low power, durable, effective and low cost regeneration of diesel particulate filters without ash accumulation. A very significant additional advantage of electrical discharges are that they are attracted to the most electrically conducting sites within the filter, i.e. once the discharge has cleaned one region it will self select a region with higher PM loadings.The research is strongly supported by key partners Caterpillar and 3DX-Ray Ltd., who will be providing substantial support in terms of cash, equipment, staff time and exploitation paths. This will enhance the impact of the research, which is expected to be high in terms of new scientific and technical knowledge, commercial value and societal benefits to the environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1805ffaff97259c73a0730b007b7e0a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1805ffaff97259c73a0730b007b7e0a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2020Partners:Loughborough University, Shell Global Solutions UK, Caterpillar UK Ltd, CMCL Innovations, Loughborough University +4 partnersLoughborough University,Shell Global Solutions UK,Caterpillar UK Ltd,CMCL Innovations,Loughborough University,Caterpillar (United States),Shell (United Kingdom),Shell Global Solutions UK,CMCL Innovations (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S017259/1Funder Contribution: 343,786 GBPWorld-wide, energy conversion is currently dominated by the combustion of fossil fuels. Electricity generation and transport are key energy consumers and contribute significantly to atmospheric CO2, NOx, and particulate emission. There is an increasing awareness in the public eye of the potential impact of particulates on health. This includes a higher risk of cancer, asthma and a potential contribution to neurodegenerative disorders (e.g., Alzheimer's disease). In the UK, particulate matter (PM) from combustion processes is a significant contributor to poor air quality in urban areas; it has been reported that more than 25,000 deaths per year could be attributed to long-term exposure to anthropogenic particulate air pollution. As reported by DEFRA, poor air quality is the largest environmental risk to public health in the UK, contributing to an estimated £2.7 billion per year in lost productivity. Air pollution also results in damage to the natural environment, contributing to the acidification of soil and watercourses. An obvious solution might be to move towards the replacement of vehicles with electric, however, this technology is limited by range, recharge times and the cost of the battery - for which there is currently not the sufficient global infrastructure to directly replace vehicles powered by internal combustion engine powered. Another complementary solution is to find alternative fuels that are tailored to reduce destructive emissions such as NOx and particulates. This has the advantage that it could be rapidly deployed due to the overlap with existing fuel station infrastructure. The main aim of the proposed research is to provide a fundamental understanding of the combustion performance and emissions characteristics of key biofuels. This is vital knowledge to aid the development of next-generation low carbon technologies. The key objectives are: (1) to provide high-quality experimental data from a study of spray flame behaviour and emissions using advanced optical diagnostic techniques such as laser-induced breakdown spectroscopy and laser-induced fluorescence, (2) to develop new combustion chemical kinetic models, based on COSILAB (Combustion Simulation Laboratory software), predicting soot and NOx emissions and (3) to establish collaborations with industrial and academic partners to investigate power generation and transport applications for next-generation biofuels. In the proposed research, the targeted biofuels are: (1) ethanol, (2) iso-pentanol, (3) dimethyl ether (DME) and (4) combined fuels - ethanol, iso-pentanol, DME and biomethane. These key fuels are potentially next-generation biofuels. The production paths of these fuels are either well established or achievable. Ethanol and DME have already shown evidence of reduced emissions from engine tests. The understanding of combustion chemistry is essential to enable the delivery of a low NOx and soot emission combustion system. How the local chemistry is influenced by various turbulent flow conditions will be examined in detail.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::73271455d6748cc5589f2144f4baae1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::73271455d6748cc5589f2144f4baae1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2023Partners:CMCL Innovations, Shell Global Solutions UK, [no title available], Shell Global Solutions UK, Caterpillar (United States) +4 partnersCMCL Innovations,Shell Global Solutions UK,[no title available],Shell Global Solutions UK,Caterpillar (United States),University of Sheffield,Caterpillar UK Ltd,University of Sheffield,CMCL Innovations (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S017259/2Funder Contribution: 244,777 GBPWorld-wide, energy conversion is currently dominated by the combustion of fossil fuels. Electricity generation and transport are key energy consumers and contribute significantly to atmospheric CO2, NOx, and particulate emission. There is an increasing awareness in the public eye of the potential impact of particulates on health. This includes a higher risk of cancer, asthma and a potential contribution to neurodegenerative disorders (e.g., Alzheimer's disease). In the UK, particulate matter (PM) from combustion processes is a significant contributor to poor air quality in urban areas; it has been reported that more than 25,000 deaths per year could be attributed to long-term exposure to anthropogenic particulate air pollution. As reported by DEFRA, poor air quality is the largest environmental risk to public health in the UK, contributing to an estimated £2.7 billion per year in lost productivity. Air pollution also results in damage to the natural environment, contributing to the acidification of soil and watercourses. An obvious solution might be to move towards the replacement of vehicles with electric, however, this technology is limited by range, recharge times and the cost of the battery - for which there is currently not the sufficient global infrastructure to directly replace vehicles powered by internal combustion engine powered. Another complementary solution is to find alternative fuels that are tailored to reduce destructive emissions such as NOx and particulates. This has the advantage that it could be rapidly deployed due to the overlap with existing fuel station infrastructure. The main aim of the proposed research is to provide a fundamental understanding of the combustion performance and emissions characteristics of key biofuels. This is vital knowledge to aid the development of next-generation low carbon technologies. The key objectives are: (1) to provide high-quality experimental data from a study of spray flame behaviour and emissions using advanced optical diagnostic techniques such as laser-induced breakdown spectroscopy and laser-induced fluorescence, (2) to develop new combustion chemical kinetic models, based on COSILAB (Combustion Simulation Laboratory software), predicting soot and NOx emissions and (3) to establish collaborations with industrial and academic partners to investigate power generation and transport applications for next-generation biofuels. In the proposed research, the targeted biofuels are: (1) ethanol, (2) iso-pentanol, (3) dimethyl ether (DME) and (4) combined fuels - ethanol, iso-pentanol, DME and biomethane. These key fuels are potentially next-generation biofuels. The production paths of these fuels are either well established or achievable. Ethanol and DME have already shown evidence of reduced emissions from engine tests. The understanding of combustion chemistry is essential to enable the delivery of a low NOx and soot emission combustion system. How the local chemistry is influenced by various turbulent flow conditions will be examined in detail.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c362c6ea70f4fb809564b499fbdd0265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c362c6ea70f4fb809564b499fbdd0265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2027Partners:University of Birmingham, Kestrel Technology Consulting, PM Group, KUKA Robotics UK Limited, Airbus Group Limited (UK) +4 partnersUniversity of Birmingham,Kestrel Technology Consulting,PM Group,KUKA Robotics UK Limited,Airbus Group Limited (UK),Manufacturing Technology Centre (United Kingdom),Wrightbus,Caterpillar (United States),ECOBATFunder: UK Research and Innovation Project Code: EP/Y02270X/1Funder Contribution: 1,035,400 GBPMany assembly and disassembly tasks in manufacturing have small clearances and limited accessibility, such as shaft-hole insertion/separation and bolt-nut assembly/disassembly. Using robots in these contact-rich tasks is more complex than those having no physical contacts (e.g. computer visual inspection) or simple contacts (e.g. cutting, welding, pick-and-place). The deployment of robots in contact-rich tasks has been limited to date. The contact-rich tasks that involve complex shapes, small clearances or deformable materials are particularly challenging to robotise due to the likely events of jamming and wedging. Our previous research has investigated techniques that allow robots to learn contact-rich skills (e.g. complex motion plans and force control policies) using two main AI-based pathways: (1) self-learning from trial-and-error, and (2) learning from human demonstrations. The two participating universities, Birmingham and Sheffield, have research experiences in (1) and (2), respectively. A key challenge observed in the current research is that in many cases a robot's contact-rich skill cannot be performed by other robots of different motion properties (e.g. accuracy, precision and stiffness), or be applied to a new task with variations (e.g. differences in object geometry, shape, and materials). This is because a robotic contact-rich skill, i.e. control policies and motion plans, is usually acquired for a specific task and cannot be adopted by new robots or in new tasks. STAMAN's vision is to create AI-based mechanisms to allow robots to share and recreate obtained digital skills (e.g. motion and force/torque control strategies) to allow easy automation scale-up for contact-rich tasks. This includes considering two research questions: 1) For skill transfer - how can a contact-rich skill be quickly transferred to a different robot (e.g. transferring a bolt-nut separation skill from a high-precision robot to a low-precision robot)? 2) For skill augmentation - how can existing contact-rich skills be used to create new contact-rich skills (e.g. augmentation of rigid-material skills to deal with soft materials)? The project will develop a portfolio of research into the science of digital skills for contact-rich tasks, focusing on common manufacturing tasks such as bolt-nut assembly/disassembly, peg-hole insertion/separation, and shaft-ring assembly/disassembly. The ability to transfer and augment digital skills for contact-rich tasks will allow automation systems to be implemented on a larger scale, with minimal manual setting and fine-tuning required. STAMAN aims to create transferrable and augmentable digital skills that will underpin the development of mass machine skills for future manufacturing, similar to how industrial robots have contributed to modern mass production. The proposed research encourages more use of robots in assembly (e.g. automotive, aerospace, electronics, etc.) and disassembly (e.g. repairs, remanufacturing and recycling), and thus directly contributes to the UK's Made Smarter initiative and the circular economy goals.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d1f94d9e6875afa6460d194e61e9aab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d1f94d9e6875afa6460d194e61e9aab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2017Partners:European Thermodynamics (United Kingdom), Dana (Canada), Caterpillar (United States), Loughborough University, Ricardo (United Kingdom) +8 partnersEuropean Thermodynamics (United Kingdom),Dana (Canada),Caterpillar (United States),Loughborough University,Ricardo (United Kingdom),Caterpillar UK Ltd,JM,Loughborough University,JOHNSON MATTHEY PLC,Dana Canada Corporation,European Thermodynamics (United Kingdom),Johnson Matthey (United Kingdom),Ricardo (United Kingdom)Funder: UK Research and Innovation Project Code: EP/K026658/1Funder Contribution: 372,621 GBPThe internal combustion engine which is in everyday use in a wide variety of applications remains one of the most cost effective means of generating power. A typical engine however loses substantial amounts of energy in its normal operation and there is clear potential to utilise this energy. The largest flow is in the exhaust system of the vehicle, and it is here that the proposed research is focussed. The main objective of the project is the realisation of an efficient method of energy recovery using a thermoelectric generator and utilising a new type of material known as a skutterudite. By adopting the same internal structure, skutterudites simulate a naturally occurring mineral which has the vital properties of low thermal conductivity with low electrical resistance. The principal advantage of these materials is their potential for cost reduction by utilising low cost metals in their structure. A second and important advantage is the future potential for novel manufacturing techniques in which the active elements of the thermoelectric generator are made using additive methods to build up the kind of complex shapes that are required. The project brings together three universities that can cover the range of capabilities from the chemistry of materials through to systems integration methods. The Heriot-Watt team will synthesise new materials using progressively lower cost materials to demonstrate that the required thermoelectric performance can be obtained using low cost materials. The Cardiff team will integrate modules, incorporating protective coatings to ensure the durability of the generator. At Loughborough, the scope to integrate thermo-electric (TE) generators with other functions such as after-treatment will be explored. The Loughborough team will work with the Cardiff team to identify novel methods of integrating the TE modules into a heat exchange device, regarding the requirements imposed by different types of engine. The project concludes with the practical demonstration of TE generators and a portfolio of simulation results that demonstrate how the cost path and the path to levels of commercial performance will be realised.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e9ce72cf1304cc9fdf715007290ca14c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e9ce72cf1304cc9fdf715007290ca14c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right