Powered by OpenAIRE graph
Found an issue? Give us feedback

CPI Ltd

84 Projects, page 1 of 17
  • Funder: UK Research and Innovation Project Code: EP/N009096/1
    Funder Contribution: 1,151,000 GBP

    Photovoltaic (PV) devices convert sunlight directly into electricity and form an increasingly important part of the global renewable energy landscape. Today's PVs are based on conventional semiconductors which are energy-intensive to produce and restricted to rigid flat plate designs. The next generation of PVs will be based on very thin films of semiconductors that can be processed from solution at low temperature, which opens the door to exceptionally low cost manufacturing processes and new application areas not available to today's rigid flat plate PVs, particularly in the areas of transportation and buildings integration. The emerging generation of thin film PVs also offer exceptional carbon dioxide mitigation potential because they are expected to return the energy used in their fabrication within weeks of installation. However, this potential can only be achieved if the electrode that allows light into these devices is low cost and flexible, and at present no electrode technology meets both the cost constraint and technical specifications needed. This proposal seeks to address this complex and inherently interdisciplinary challenge using three new and distinct approaches based on the use of nano-structured films of metal less than 100 metal atoms in thickness. The first approach focuses on the development of a low cost, large area method for the fabrication of metal film electrodes with a dense array of holes through which light can pass unhindered. The second approach seeks to determine design rules for a new type of 'light-catching' electrode that interacts strongly with the incoming light, trapping and concentrating it at the interface with the semiconductor layer inside the device responsible for converting the light into electricity. The final approach is based on combining ultra-thin metal films with ultra-thin films of transparent semiconductor materials to achieve double layer electrodes with exceptional properties resulting from spontaneous intermixing of the two thin solid films. The UK is a global leader in the development of next generation PVs with a growing number of companies now focused on bringing them to market, and so the outputs of the proposed programme of research has strong potential to directly increase the economic competitiveness of the UK in this young sector and would help to address the now time critical challenge of climate change due to global warming.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P006566/1
    Funder Contribution: 10,724,100 GBP

    Manufacture Using Advanced Powder Processes - MAPP Conventional materials shaping and processing are hugely wasteful and energy intensive. Even with well-structured materials circulation strategies in place to recondition and recycle process scrap, the energy use, CO2 emitted and financial costs associated are ever more prohibitive and unacceptable. We can no longer accept the traditional paradigm of manufacturing where excess energy use and high levels of recycling / down cycling of expensive and resource intensive materials are viewed as inevitable and the norm and must move to a situation where 100% of the starting material is incorporated into engineering products with high confidence in the final critical properties. MAPP's vision is to deliver on the promise of powder-based manufacturing processes to provide low energy, low cost, and low waste high value manufacturing route and products to secure UK manufacturing productivity and growth. MAPP will deliver on the promise of advanced powder processing technologies through creation of new, connected, intelligent, cyber-physical manufacturing environments to achieve 'right first time' product manufacture. Achieving our vision and realising the potential of these technologies will enable us to meet our societal goals of reducing energy consumption, materials use, and CO2 emissions, and our economic goals of increasing productivity, rebalancing the UK's economy, and driving economic growth and wealth creation. We have developed a clear strategy with a collaborative and interdisciplinary research and innovation programme that focuses our collective efforts to deliver new understanding, actions and outcomes across the following themes: 1) Particulate science and innovation. Powders will become active and designed rather than passive elements in their processing. Control of surface state, surface chemistry, structure, bulk chemistry, morphologies and size will result in particles designed for process efficiency / reliability and product performance. Surface control will enable us to protect particles out of process and activate them within. Understanding the influence between particle attributes and processing will widen the limited palette of materials for both current and future manufacturing platforms. 2) Integrated process monitoring, modelling and control technologies. New approaches to powder processing will allow us to handle the inherent variability of particulates and their stochastic behaviours. Insights from advanced in-situ characterisation will enable the development of new monitoring technologies that assure quality, and coupled to modelling approaches allow optimisation and control. Data streaming and processing for adaptive and predictive real-time control will be integral in future manufacturing platforms increasing productivity and confidence. 3) Sustainable and future manufacturing technologies. Our approach will deliver certainty and integrity with final products at net or near net shape with reduced scrap, lower energy use, and lower CO2 emissions. Recoupling the materials science with the manufacturing science will allow us to realise the potential of current technologies and develop new home-grown manufacturing processes, to secure the prosperity of UK industry. MAPP's focused and collaborative research agenda covers emerging powder based manufacturing technologies: spark plasma sintering (SPS), freeze casting, inkjet printing, layer-by-layer manufacture, hot isostatic pressing (HIP), and laser, electron beam, and indirect additive manufacturing (AM). MAPP covers a wide range of engineering materials where powder processing has the clear potential to drive disruptive growth - including advanced ceramics, polymers, metals, with our initial applications in aerospace and energy sectors - but where common problems must be addressed.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/K003240/1
    Funder Contribution: 3,167,920 GBP

    Complex microbial communities underlie natural processes such as global chemical cycles and digestion in higher animals, and are routinely exploited for industrial scale synthesis, waste treatment and fermentation. Our basic understanding of the structures, stabilities and functions of such communities is limited, leading to the declaration of their study as the next frontier in microbial ecology, microbiology, and synthetic biology. Focusing on biomethane producing microbial communities (BMCs), we will undertake a two-tiered approach of optimising natural communities and designing synthetic communities with a focus on achieving robust, high-yield biomethane production. Within this biotechnological framework, our proposal will address several fundamental scientific questions on the link between the structure and function of microbial communities. To ensure success in this challenging project, we assembled the strongest possible interdisciplinary research team that combines significant practical and scientific expertise in microbial ecology and evolution, systems modelling, molecular microbiology, bioengineering, genomics, and synthetic biology. We are confident that this team will deliver and that this project will result in significant impact in the scientific and industrial domains. Through our work, described in detail below, we will; significantly improve the current understanding of the structure-function relation in microbial communities, provide the scientific community with a systematic, temporal genomics and transcriptomics dataset on complex microbial communities, develop novel computational tools for microbial community (re)design, and experimentally build synthetic BMCs that will act as model ecosystems in different research fields. These scientific developments, in turn, will accumulate in the development of more sustainable bioenergy solutions for the UK economy by optimising the communities underlying biomethane production. This will help to drive the efficiency of biomethane as an alternative fuel source.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K03099X/1
    Funder Contribution: 5,627,160 GBP

    Large-Area Electronics is a branch of electronics in which functionality is distributed over large-areas, much bigger than the dimensions of a typical circuit board. Recently, it has become possible to manufacture electronic devices and circuits using a solution-based approach in which a "palette" of functional "inks" is printed on flexible webs to create the multi-layered patterns required to build up devices. This approach is very different from the fabrication and assembly of conventional silicon-based electronics and offers the benefits of lower-cost manufacturing plants that can operate with reduced waste and power consumption, producing electronic systems in high volume with new form factors and features. Examples of "printed devices" include new kinds of photovoltaics, lighting, displays, sensing systems and intelligent objects. We use the term "large-area electronics" (LAE) rather than "printable electronics" because many electronic systems require both conventional and printed electronics, benefitting from the high performance of the conventional and the ability of the printable to create functionality over large-areas cost-effectively. Great progress has been made over the last 20 years in producing new printable functional materials with suitable performance and stability in operation but despite this promise, the emerging industry has been slow to take-off, due in part to (i) manufacturing scale-up being significantly more challenging than expected and (ii) the current inability to produce complete multifunctional electronic systems as required in several early markets, such as brand enhancement and intelligent packaging. Our proposed Centre for Innovative Manufacturing in Large-Area Electronics will tackle these challenges to support the emergence of a vibrant UK manufacturing industry in the sector. Our vision has four key elements: - to address the technical challenges of low-cost manufacturing of multi-functional LAE systems - to develop a long-term research programme in advanced manufacturing processes aimed at ongoing reduction in manufacturing cost and improvement in system performance. - to support the scale-up of technologies and processes developed in and with the Centre by UK manufacturing industry - to promote the adoption of LAE technologies by the wider UK electronics manufacturing industry Our Centre for Innovative Manufacturing brings together 4 UK academic Centres of Excellence in LAE at the University of Cambridge (Cambridge Integrated Knowledge Centre, CIKC), Imperial College London (Centre for Plastic Electronics, CPE), Swansea University (Welsh Centre for Printing and Coating, WCPC) and the University of Manchester (Organic Materials Innovation Centre, OMIC) to create a truly representative national centre with world-class expertise in design, development, fabrication and characterisation of a wide range of devices, materials and processes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M020983/1
    Funder Contribution: 779,744 GBP

    We are all familiar with the concept of travel, and visiting York from Glasgow is conceptually a trial matter. When we reflect on this process, however, there are lots of potential questions we might ask about the mode of transport, the route and the potential to get lost. A similar range of questions could be asked about chemical reactions. We select starting materials and seek to transform them into products. The route we choose is equally complex. Now, however, the participants are much smaller and very special methods are needed to view them. Furthermore, with an optimal solution we get the most product from the least starting material using the least amount of energy and other resources as possible. If think of a reaction that is undertaken on the 1,000,000 tonne scale it is also clearly vital to minimise waste. In Chemistry, there is a very special and often expensive method called nuclear magnetic resonance spectroscopy (NMR) that allows us to take pictures of the participants as they travel from starting materials to products. This methods is normally very insensitive and hence very expensive large magnets are required. If we want to use this technology to deliver clean and efficient chemistry on an industrial scale we need to find a way to work with smaller lower cost magnets, ideally using the Earth's magnetic field. In this project we aim to develop a new method using such low-magnetic field NMR devices to follow the route taken by molecules during their conversion into high value products in both laboratory and industrial settings. We will use a special form of hydrogen gas, known as parahydrogen to increase the sensitivity of the NMR measurement to a level that will allow to achieve this goal. Parahydrogen was actually the fuel of the space shuttle and one might view it here as acting like a molecular microscope whilst at the same time removing (filtering) any unwanted signals from spectators to the reaction of interest. We will build-up our understanding of the reactions route by taking our NMR pictures which contains precise information about the identity of the participants (molecules) at different times after the start of the reaction. This means that we will monitor the same process several times in order to produce the necessary molecular level picture that will ultimately allow us to optimise our chosen reaction. The enhanced level of information that will be provided by our new device will enable scientists and industrialists to develop and optimise reactions in a way that was previously impossible and hence contribute more positively to society.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.