Powered by OpenAIRE graph
Found an issue? Give us feedback

Saint-Gobain (United Kingdom)

Saint-Gobain (United Kingdom)

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/R018820/1
    Funder Contribution: 5,436,240 GBP

    Crystallisation is a fascinating process. From common observations such as the formation of ice on a window or scale in a kettle, crystallisation is important to virtually every area of science, and lies at the heart of processes as varied as the production of ceramics, pharmaceuticals, fine chemicals, nanomaterials and biominerals. Equally important is the prevention of unwanted crystallisation in the form of weathering, scale or kidney stones. Only by understanding how materials crystallise can we hope to control these processes. Despite the importance of crystallisation, we still have a poor understanding of many of the mechanisms that underlie this fundamental phenomenon. This is due to the fact that crystallisation is governed by molecular scale processes that are very difficult to study experimentally. For example, while experiments can identify reaction conditions that generate specific crystal polymorphs, they cannot alone explain why this occurred. This Programme Grant will couple experiment and theory to address this challenge. Our experimental programme brings to the fore such frontier analytical techniques as liquid-phase TEM and functional scanning probe microscopies that will allow us to study the changes in solid and solution during crystallisation as never before. With recent advances in modelling we shall be able to perform simulations of nucleation and growth processes on comparable time- and length-scales, providing a unique opportunity to fully understand crystal nucleation and growth at the nanoscale. These studies will be linked to simpler bulk experiments to provide a holistic view of crystallisation in the real world. We will use this approach to address six major challenges in the crystallisation of inorganic compounds. Each challenge, as well as being of fundamental importance, is ultimately significant to industry and has practical applications as varied as scale prevention in dishwashers, dental remineralisation and tailoring particle shape for paper coatings. Investigations of homogeneous crystallisation in bulk solution will lay the foundation for our nucleation studies, revealing how we can direct nucleation pathways by varying solution and environmental conditions. We will then build on this work to explore the fascinating question of polymorphism, giving us predictive understanding of conditions which deliver specific crystal polymorphs. Turning then to the ubiquitous phenomenon of surface-directed crystallisation, both theory and cutting-edge analytical methods will bring new understanding of how surfaces - and the changes they cause in the adjacent solution - govern crystallisation. This naturally leads us to a search for effective nucleating agents, which, despite the promises of classical nucleation theory, are known for only a small number of systems. Control of crystal growth to generate particles with defined shapes and sizes is another topic of great industrial importance, and soluble additives are widely used to achieve this goal. By understanding crystal/ additive interactions we aim to pre-select additives to grow crystals with target properties, or to inhibit unwanted crystallisation. Finally, we will study crystallisation within confined volumes; this will ultimately enable us to use confinement to control crystallisation. These ambitious objectives can only be met within the framework of a Programme Grant, which provides the flexibility and long-term funding to bring together the very different disciplines of theory and experiment. While each of the individual tasks focuses on a distinct problem in crystallisation, they are intimately linked over the entire project by common methods and understanding, and developments in one task will drive advances in others.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E002323/1
    Funder Contribution: 17,848,800 GBP

    The Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.