Powered by OpenAIRE graph
Found an issue? Give us feedback

IBM Research (International)

IBM Research (International)

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N015126/1
    Funder Contribution: 4,574,890 GBP

    We will establish a UK quantum device prototyping service, focusing on design, manufacture, test, packaging and rapid device prototyping of quantum photonic devices. QuPIC will provide academia and industry with an affordable route to quantum photonic device fabrication through commercial-grade fabrication foundries and access to supporting infrastructure. QuPIC will provide qualified design tools tailored to each foundry's fabrication processes, multiproject wafer access, test and measurement, and systems integration facilities, along with device prototyping capabilities. The aim is to enable greater capability amongst quantum technology orientated users by allowing adopters of quantum photonic technologies to realise advanced integrated quantum photonic devices, and to do so without requiring in-depth knowledge. We will bring together an experienced team of engineers and scientists to provide the required breadth of expertise to support and deliver this service. Four work packages deliver the QuPIC service. They are: WP1 - Design tools for photonic simulation and design software, thermal and mechanical design packages and modelling WP2 - Wafer fabrication - Establishing the qualified component library for the different fabrication processes and materials and offering users a multi-project wafer service WP3 - Integrated device test and measurement - Automated wafer scale electrical and optical characterisation, alignment systems, cryogenic systems to support single-photon detector integration) WP4 - Packaging and prototyping - Tools for subsystem integration into hybrid and functionalised quantum photonic systems and the rapid prototyping of novel, candidate component designs before wafer-scale manufacturing and testing The design tools (WP1) will provide all the core functionality and component libraries to allow users to design quantum circuits, for a range of applications. We will work closely with fabrication foundries (WP2) to qualify the design libraries and to provide affordable access to high-quality devices via a multi-project wafer approach, where many users share the fabrications costs. Specialist test and measurement facilities (WP3) will provide rapid device characterization (at the wafer level), whilst packaging and prototyping tools (WP4) will allow the assembly of subsystems into highly functionalised quantum photonic systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M025330/1
    Funder Contribution: 5,123,950 GBP

    Hybrid polaritonics combines the properties of different light emitting materials - organic polymers and semiconductors - in order to produce quasiparticles that combine the possibilities of both systems. "Polaritons" are quasi-particles that arise from strong coupling between light and matter. This means that they have hybrid properties, combining the mobility and flexibility of light, with the possibilities of interactions due to the matter component. At high enough densities, or low enough temperatures, polaritons can form a macroscopic coherent quantum state, a polariton condensate, or a polariton laser. Such a coherent state shows much of the same physics as Bose Einstein Condensation, as has been seen for cold atoms, but without requiring the ultra-low tempeatures required for atoms. Hybid polaritonics focuses on how, by combining different "matter" parts of the polariton, one can push these temperatures even higher, up to room temperature, and how one can engineer completely tunable system. The matter part of a polariton can come from any material which will absorb and emit light at a specific wavelength. Much existing work on polaritons is based on the material being inorganic semiconductors. These can be grown controllably, and one can drive such devices by passing an electrical current through them to make a polariton laser. However, the coupling between matter and light in semiconductors is not strong enough for these devices to work at room temperature. In contrast, organic molecules and polymers can show huge coupling strengths, but are generally poor electrical conductors. Our programme is to combine the benefits of both systems to provide a whole set of devices, operating at room temperature, based on the formation of polaritons. These devices will range from polariton lasers (providing a route to easily tunable lasers with very low threshold currents), to Terrahertz light sources (with applications in non-invasive medical imaging and explosives detection), to ultra-efficient light emitting diodes. To reach these ambitious objectives, we need to combine expertise from a wide number of fields. Our team contains world experts in light emitting polymers, semiconductor growth, characterisation and spectroscopy of polaritons, and in theoretical modelling. Members of our team have previously achieved the first realisations of polariton lasing, of strong coupling with organic materials, and of building hybrid polariton lasers. The possibility to combine this expertise draws on the unique strengths that the UK currently has in this area, and enables the combination of this expertise to be focussed on providing room temperature devices based on hybrid polaritonics, and to revolutionise this field.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P510269/1
    Funder Contribution: 4,411,280 GBP

    Our ambition is to build upon the already successful Quantum Engineering Centre for Doctoral Training (QE-CDT) at the University of Bristol and partner with Cranfield University's Bettany Centre for Entrepreneurship to create a world-leading Hub to train entrepreneurially-minded quantum systems engineers ready for a career in the emerging Quantum Technology (QT) industry. The 'Quantum Enterprise Hub' has 3 key components: Quantum Systems Engineering; Enterprise, Entrepreneurship and Innovation; and Connectivity. The Hub will have unrivalled international excellence in Quantum Engineering, surrounded by world-class expertise in all areas of Systems Engineering and the scientific and technological application areas of QT at the University of Bristol. We will work in partnership with Cranfield University, whose internationally recognised MBA and Ventures Programme will provide the industrially relevant management, entrepreneurship, innovation, and design components of the Hub. Connectivity will be delivered through our network of partners, including the UK National Network of Quantum Technology Hubs, the award winning SETSquared Partnerships and EngineShed, and other academic and industrial partners, working on joint projects and secondments, networking events, Venture Days, investor showcase events, seminars, coaching and mentoring, and other events that will enable students to establish their own broad network of contacts. We have designed the Quantum Enterprise Hub in collaboration with a number of academic and industry experts, and included as partners those who will add substantially to the training experience of our students and fellows. Through this process, a consistent picture of the skills that industry requires for future quantum systems engineers has emerged: innovators who can tackle the hardest intellectual challenges and recognise the end goal of their research, with an ability to EP/N015061/1 Page 2 of 15 Date Saved: 06/07/2015 11:56:16 Date Printed: 06/07/2015 13:11:03 Academic Beneficiaries Describe who will benefit from the research [up to 4000 chars]. Impact Summary Impact Summary (please refer to the help for guidance on what to consider when completing this section) [up to 4000 chars] move from fundamental physics towards the challenges of engineering and developing practical systems, who understand the capabilities of other people (and why they are useful). Industry needs people with good decision-making, communication and management skills, with the ability to work across discipline boundaries (to a deadline and a budget) and build interdisciplinary teams, with the ability to translate a problem from one domain to another. Relevant work experience, knowledge of entrepreneurship, industrial R&D operations, and business practices are essential. We believe that the Quantum Enterprise Hub is something new and exciting with the potential to attract and train the best and brightest students and fellows to ensure that the resulting capacity is world-class and novel, thus providing real and lasting benefits to the UK economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R007977/1
    Funder Contribution: 441,382 GBP

    Novel quasi-particles, so-called polaritons, can be formed in an optically active semiconductor material due to mixing of photons and excitons (an exciton is an analogue of hydrogen in condensed matter). While two photons colliding in free space do not interact, polaritons strongly repel due to the exciton component in their wavefunctions. The Sheffield group has demonstrated that polariton-polariton interactions are several orders of magnitude stronger than effective photon-photon interactions in any other ultrafast photonic materials, where light is weakly coupled to matter. The efficient polariton-polariton scattering can be utilised for development of novel ultrafast light sources, frequency mixers and converters as well as scalable and compact devices performing control of light by light on a very fast timescale and at very low signal intensities (potentially at a single photon level). Potentially, this may have a strong impact on development of novel photonic signal processing and quantum technology hardware. The polariton platform is also well suited to the study of fundamental many-body phenomena ranging from Bose-Einstein condensation, superfluidity and solitons to quantum correlated phases in important physical systems, such as photonic analogues of topological insulators or quantum Hall systems. So-far phenomena due to polariton interactions have been explored in GaAs microresonators only at 4-50 K. Our proposal capitalises on the recent demonstration of ultraviolet polaritons in waveguides based on AlGaN/GaN material, where polaritons are robust at 300 K given the large exciton binding energy and highly efficient exciton-photon coupling; this provides an opportunity to explore the novel room temperature physics of interacting polaritons and to bring polariton applications to reality. In order to explore the fundamental physics of interacting GaN polaritons we will address polariton solitons, i.e non-spreading wavepackets stabilised by the nonlinearity. These interactions depend on many factors, such as the exciton Bohr radius, binding energy and the exciton fraction in the polariton wavefunction. A weak light pulse propagating in a polariton waveguide broadens with time, as different frequency components propagate with different velocities. By contrast, by increasing the pulse intensity polariton interactions are expected to cancel the spreading leading to formation of a soliton. Given the giant polariton nonlinearities solitons are expected to form at ultra-low thresholds and on a very short length-scale of ~10 micrometers. Another advantage of GaN-based waveguides over GaAs counterparts is that exciton-photon hybridisation occurs over a broad range of frequencies enabling polariton-polariton scattering from a spectrally narrow pulse to a broad quasi-continuum of states. As a result very short UV polariton soliton pulses with a duration down to 10's femtoseconds are anticipated. The outcome of this research would also enable realisation of novel ultraviolet broadband pulsed sources and frequency converters operating at very low thresholds, which are important for many spectroscopy applications in biophotonics and molecular photochemistry. Finally, we will demonstrate a prototype of a compact ultrafast all-optical polariton switch by exploiting nonlinear interactions between the polariton pulses with different central frequencies propagating in a photonic circuit based on coupled waveguides. These interactions induce nonlinear phase shifts in the optical signals enabling routing and switching of the ultrafast optical pulses. Given the very fast response of polariton system such a switch is expected to operate at THz rates. We note that exciton-polaritons in GaN-based nanostructures are also very robust against screening by hot electron-hole carriers, enabling study of the amplification of propagating polaritons in the presence of optical gain. This is essential for scalability of polariton devices.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N017188/1
    Funder Contribution: 5,296,040 GBP

    Put your hand under a working laptop computer and you'll find that it's warm, due to the heat produced by the transistors in it. This isn't just a problem for your own computer: nearly 5% of the world's electricity is used by computers and the internet, a figure expected to double over the next decade. Much of this is wasted in generating heat that, according to thermodynamic theory, is not needed for information processing; and over half is for cooling systems to remove the unwanted heat. The resulting carbon emissions are comparable to the total global aviation industry. If we can reduce the energy consumption of logic operations in information technologies, or scavenge just a fraction of the waste heat, the effect on energy use and carbon emissions could be vast. Recent research breakthroughs have opened up new possibilities for making tiny electronic components and circuits, based on individual molecules, which have the potential to do just that (since their behaviour is not constrained by the laws of classical physics). To make this a reality, we must first learn to understand and control quantum effects in electronic nanodevices. We can use a new material, graphene, to make mechanically and chemically stable electrodes and connect them to electrically-active molecules. New methods allow us to make a very small gap in graphene which is just the right size for a molecule or a single strand of DNA (for fast and cheap DNA sequencing). Chemical units have been developed that attach to molecules and adhere like sticky notes to the graphene contacts on each side of the gap.. With graphene electrodes we can also make magnetic connections to single molecules to create molecular memory devices. A phenomenon called quantum interference can dramatically affect the flow of electric current in molecules. Harnessing these quantum effects will enable us to make tiny switches that would consume very little energy, and to generate electricity from small differences in temperature. The time is ripe for a focused research effort, drawing together these advances to transform our understanding and to pave the way for practical applications. Our programme is one of discovery science with a view to practical benefit. QuEEN will first establish the basic platform technology for experiments on single-molecule devices, including selection of the best molecules and control of their quantum interference by a local electric field. It will conclude by seeking to transfer results from rather ideal (cryogenic) laboratory conditions to a real-world environment, at room temperature. In between those two challenges, we shall explore three particularly promising areas for scientific discovery and application: controlling the magnetic property of an electron, known as spin, for quantum interference for potential use in universal computer memories; seeing how much electricity a molecule can generate if its ends are held at different temperatures, offering the potential for energy harvesting; and finding the performance limits of a single-molecule transistor, for potential uses in low-power computing and timer-controllers for the Internet of Things. The research requires four core skill sets, which form a virtuous circle: chemistry, to design and synthesise the molecules at the heart of our devices and stick them reliably to electrodes; nanofabrication, to make molecule-sized gaps in graphene ribbons; measurement techniques and advanced instrumentation to control the environment and characterise the quantum effects; and theory, to predict the effects, screen potential molecules, and interpret the results. QuEEN brings together a research team with exactly the right mix of expertise; an Advisory Board with wide experience of successful technological entrepreneurship; and a group of industrial partners who will not only shape and assist with the research but also provide a pathway to technological innovation and real-world applications.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.