Powered by OpenAIRE graph
Found an issue? Give us feedback

Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry

Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry

41 Projects, page 1 of 9
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: KICH1.ED04.20.001

    Green hydrogen is a CO2-free energy carrier that can be made from water and solar or wind energy. This process is carried out with electrolyzers, but these are still expensive. The project ALKALICOAT improves the interplay between anodes, cathodes and membranes in the electrolyzers improving their performance and making them cheaper.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: CE.02.014

    Het doel van dit project is fosfaat uit mest als grondstof te laten dienen voor biobased brandvertragers ten behoeve van het vlamvertragend maken van (bio)-textiel en materialen. Waarom is fosfaat als brandvertraging belangrijk in deze materialen? Op deze manier wordt fosfaat dat reeds als meststof gediend heeft nogmaals een tweede leven gegeven, zonder het nadeel dat het tot eutrofiering leidt en of weer in de bodem terecht komt en kostbare schaarse grondstof bespaart. Om dit mogelijk te maken hebben twee ondernemers zich gecommiteerd om enerzijds de chemische werking te ontwikkelen, die nodig is om de brandvertragende functie toe te kennen aan de textiele materialen en anderzijds een alternatieve bron, c.q. een reststroom (mest) daarvoor te gebruiken. Met deze Kiem-Vang aanvraag wordt ingespeeld op de vraag uit de samenleving voor meer bionased materialen, c.q. verwaarding van reststromen. De focus ligt op het verwaarden van stikstof en fosfor uit mest voor niet-agrarische toepassing. De ondernemers geven aan dat, als Nederland voorop wil blijven lopen als de agrarische en technologische hoofdstad van Europa, het nu tijd is voor actie. Doelstelling is om, in navolging van Jonker (2014), te komen tot een transitie van agrarische reststromen naar hoogwaardige restproducten voor chemie en voeding. Voor dit Biobrandvertragers project is de onderzoeksvraag of het mogelijk is om biobrandvertragers te maken uit mest welke circulaire business- en verdienmodellen er realiseerbaar zijn voor het verwaarden van daarvan. Om die onderzoeksvraag uiteindelijk te kunnen beantwoorden, zijn een aantal deelvragen geformuleerd: 1) Welke alternatieve bronnen voor fosfaat en stikstof uit mest zijn geschikt om toe te passen als brandvertrager? 2) Welke typen bio-brandvertragers kunnen worden ontwikkeld op basis van fosfaat en stikstof uit mest? 3) In welke markten kunnen kansrijke bio-brandvertragers worden afgezet? 4) Welke kansrijke business- en verdienmodellen zijn er voor brandvertagers op basis van mest

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 700.57.322

    Supramolecular polymers are defined as polymeric arrays of monomeric units that are brought together by reversible and highly directional non-covalent interactions, resulting in polymeric properties in dilute and concentrated solution as well as in the bulk. In the recent past, we have shown that a large variety of supramolecular polymers can be created using a variety of directional interactions. Two main systems are studied. The first class makes use of multiple-hydrogen bonding and the dynamics of the interactions are crucial for the understanding of the molecular and macroscopic properties of these flexible polymers. In less than ten years after their discovery, ureidopyrimidinone-based polymers are close to being commercialized and this is primarily due to the fundamental insights obtained from these flexible and disordered systems. The second class is based on more ordered one-dimensional stacks, making use of pi-pi interactions and/or hydrogen bonding and this class represents the rigid rod supramolecular polymers and therefore a possible candidate for high-end applications, like electronic devices. More recently, the understanding of supramolecular polymers is extended by focusing on the mechanisms of the supramolecular polymerization processes. Next to an open-association model for flexible chains, we have disclosed experimental evidence for the nucleation-growth mechanism for structured one-dimensional polymer arrays. In the research proposed in this TOP-grant proposal, we are aiming at a full understanding at the molecular level of all mechanistic features of supramolecular polymerization processes on the one hand. On the other hand, we will use this knowledge in the design, synthesis, characterization and application of novel functional materials with unprecedented properties. As is well accepted for covalent polymers, the mechanism of formation (step versus chain versus ring-opening polymerization) is leading to the understanding of the polymer properties. We are convinced that the same basic understanding of the mechanism of non-covalent or supramolecular polymerization processes will be as crucial as for covalent polymers or macromolecules. With a firm understanding of the pathways of formation and the dynamics involved (kinetic stability versus thermodynamic equilibrium) these novel materials will open the way to arrive at complex molecular systems based on multiple components. Supramolecular polymerization processes will be investigated by four related but different research topics, in which the two fist ones focus on the mechanism of the polymerization process and the last two are using this knowledge for creating novel materials.

    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 040.03.019
    more_vert
  • Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.2021.054

    The energy transition requires new materials for greening chemistry and transportation. Electrolyzers and fuel cells need more efficient electrodes and more robust membranes. Scarce materials call for everyday alternatives. PLD4Energy is a Pulsed Laser Deposition (PLD) facility for producing such thin film (membrane) alternatives. It is tailored to research for energy applications. PLD has the right in-situ diagnostics to move from small to larger film areas in a controlled manner. The facility lends itself to fundamental research, as well as the next, essential step: actual implementation. PLD4Energy welcomes external researchers and also companies that want to test commercial applications.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.