Powered by OpenAIRE graph
Found an issue? Give us feedback

Cenex

Country: United Kingdom
11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/R041970/2
    Funder Contribution: 630,523 GBP

    Over thirty six months, this project aims to demonstrate the potential of a highly disruptive zero emission, high efficiency electricity generator concept for use in transport and power generation applications. A Zero-Emission Closed-loop linear-Joule CYcle (ZECCY) engine generator which yields only liquid water as an emission (i.e. no particulates, or gas phase emissions). As such, it is analogous with hydrogen-fuel cell technology but more lightweight, potentially more efficient and based on a well-established UK manufacturing base. This project will demonstrate the true potential of this technology for vehicle applications by: a. Completing the manufacture, assembly and commissioning of a concept demonstrator through the development of an existing test platform b. Gather the evidence required to advance the project successfully by conducting a robust testing programme underpinned by rigorous simulation and performance improvement. c. Establish the future case of ZECCY generator technology through the development of a technical and commercial roadmap to deployment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R041970/1
    Funder Contribution: 897,057 GBP

    Over thirty six months, this project aims to demonstrate the potential of a highly disruptive zero emission, high efficiency electricity generator concept for use in transport and power generation applications. A Zero-Emission Closed-loop linear-Joule CYcle (ZECCY) engine generator which yields only liquid water as an emission (i.e. no particulates, or gas phase emissions). As such, it is analogous with hydrogen-fuel cell technology but more lightweight, potentially more efficient and based on a well-established UK manufacturing base. This project will demonstrate the true potential of this technology for vehicle applications by: a. Completing the manufacture, assembly and commissioning of a concept demonstrator through the development of an existing test platform b. Gather the evidence required to advance the project successfully by conducting a robust testing programme underpinned by rigorous simulation and performance improvement. c. Establish the future case of ZECCY generator technology through the development of a technical and commercial roadmap to deployment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P024807/1
    Funder Contribution: 3,373,120 GBP

    The H2FC sector is developing at a rapid pace around the world. In USA, Germany, S.Korea, and Japan, where the government has provided incentives or entered public-private partnerships, the uptake of FC technologies has been far greater than in the UK and is expected to grow, generating billions of dollars every year. In Asia, manufacturers will produce around 3,000 fuel cell cars in 2016 and around 50,000 fuel cell combined heat and power devices. Toyota alone expects to build 30,000 FC cars in 2020. Some hydrogen buses in London's fleet have operated for nearly 20,000 hours since 2011 and the city of Aberdeen runs Europe's largest hydrogen bus fleet, while individual stationary fuel cells have generated power for over 80,000 operating hours. The recently issued H2FC UK roadmap has identified key opportunities for the UK and areas in which H2FC technologies can have benefits. The H2FC SUPERGEN Hub seeks to address a number of key issues facing the hydrogen and fuel cells sector, specifically: (i) to evaluate and demonstrate the role of hydrogen and fuel cell research in the UK energy landscape, and to link this to the wider landscape internationally, (ii) to identify, study and exploit the impact of hydrogen and fuel cells in low carbon energy systems, and (iii) to create a cohort of academics and industrialists who are appraised of each other's work and can confidently network together to solve research problems which are beyond their individual competencies. Such systems will include the use of H2FC technologies to manage intermittency with increased penetration of renewables, supporting the development of secure and affordable energy supplies for the future. Both low carbon transport (cars, buses, boats/ferries) and low carbon heating/power systems employing hydrogen and/or fuel cells have the potential to be important technologies in our future energy system, benefiting from their intrinsic high efficiency and their ability to use a wide range of low to zero carbon fuel stocks.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K022229/1
    Funder Contribution: 1,139,180 GBP

    This project is associated with the EPSRC Solar Energy Hub. It sets out the scientific, technical and socio-economic grand challenge of wide scale integration of photovoltaic systems (PV) into electric power systems with particular focus on the UK. This challenge is interdisciplinary and the research required to address it requires a range of interdisciplinary skills. The academic team comprises internationally recognised experts in electrical power systems, social sciences, environmental and techno-economic assessment, PV materials and devices from the Universities of Manchester, Sheffield, Loughborough and Oxford Brookes. Solar PV plays a modest role in the UK Pathways to 2050 articulated by DECC. Although the Government's feed-in tariff programme has led to a total PV installed capacity (for up to 50kW installations) exceeding 1.2GW, equivalent to 1.6% of the total installed generation capacity in Great Britain, its current trend falls short from the DECC trajectories. To enhance the role of PV this research examines the UK electricity system of 2050, including generation sources and networks, in which solar PV is assumed to play a significant role. It aims to investigate the drivers and opportunities to facilitate an increase in the role of solar energy in the UK energy futures. It will develop a range of future energy scenarios out to 2050. The energy scenarios will be informed and driven by PV stakeholders' (customers, developers, policy advisors, material scientists) perceptions and perspectives of solar PV as a serious player in energy supply in the UK. The proposal also has a wider interest in solar PV on a global scale with particular focus on the role that UK industry could play in providing innovative PV technologies to lead global uptake of solar PV. In the move to decarbonise electricity supply globally, it is likely that more and more reliance will have to be placed on renewable energy sources, with solar PV playing a major role. Harnessing this ubiquitous resource in a manner that ensures it delivers carbon savings in a cost-effective and efficient manner remains one of the key challenges to its widespread adoption as a serious contender in global energy supply. This project will evaluate with key stakeholders their vision of the "PV future", and via the construction of potential future PV scenarios, will result in a comparative analysis of the impacts and benefits of these futures, taking into account: (i) The greenhouse gas savings and wider environmental impacts of the PV implementation (ii) Life cycle assessment of costs of implementation from the perspective of different stakeholders such as utilities, government, users (iii) The infrastructure and energy systems implications of implementation (iv) The socio-economic impacts of implementation, including on fuel poverty, job creation etc We propose the investigation and articulation of the changes in power system design and operation to accommodate wide scale penetration of PV. This project aims to maximize the contribution of PV to UK renewable energy and carbon reduction targets by strategically assessing the systems level challenges that are encountered with adventurous levels of PV penetration in the UK energy system. The expertise of the group will evaluate the challenges: (i) for the electrical system (ii) for material/resource availability (iii) of cost reduction (iv) of maximizing life-cycle carbon reductions (v) of delivering social benefits The work will therefore go beyond the idea of optimizing to make solar energy more cost competitive; considering instead the whole-life cycle sustainability (economic, environmental and social) of different PV options, how they could be accommodated in the evolving UK energy system and identifying relevant barriers and obstacles at an early stage. This requires engagement with scientists in the hub, DNO's, regulators and manufacturers, but also with existing and potential PV users.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I038586/1
    Funder Contribution: 3,012,030 GBP

    Hybrid electric vehicles (HEV) are far more complex than conventional vehicles. There are numerous challenges facing the engineer to optimise the design and choice of system components as well as their control systems. At the component level there is a need to obtain a better understanding of the basic science/physics of new subsystems together with issues of their interconnectivity and overall performance at the system level. The notion of purpose driven models requires models of differing levels of fidelity, e.g. control, diagnostics and prognostics. Whatever the objective of these models, they will differ from detailed models which will provide a greater insight and understanding at the component level. Thus there is a need to develop a systematic approach resulting in a set of guidelines and tools which will be of immense value to the design engineer in terms of best practice. The Fundamental Understanding of Technologies for Ultra Reduced Emission Vehicles (FUTURE) consortium will address the above need for developing tools and methodologies. A systematic and unified approach towards component level modelling will be developed, underpinned by a better understanding of the fundamental science of the essential components of a FUTURE hybrid electrical vehicle. The essential components will include both energy storage devices (fuel cells, batteries and ultra-capacitors) and energy conversion devices (electrical machine drives and power electronics). Detailed mathematical models will be validated against experimental data over their full range of operation, including the extreme limits of performance. Reduced order lumped parameter models are then to be derived and verified against these validated models, with the level of fidelity being defined by the purpose for which the model is to be employed. The work will be carried out via three inter-linked work packages, each having two sub-work packages. WP1 will address the detailed component modelling for the energy storage devices, WP2 will address the detailed component modelling for the energy conversion devices and WP3 will address reduced order modelling and control optimisation. The tasks will be carried out iteratively from initial component level models from WP1 and WP2 to WP3, subsequent reduced order models developed and verified against initial models, and banks of linear-time invariant models developed for piecewise control optimisation. Additionally, models of higher fidelity are to be obtained for the purpose of on-line diagnosis. The higher fidelity models will be able to capture the transient conditions which may contain information on the known failure modes. In addition to optimising the utility of healthy components in their normal operating ranges, to ensure maximum efficiency and reduced costs, further optimisation, particularly at the limits of performance where component stress applied in a controlled manner is considered to be potentially beneficial, the impact of ageing and degradation is to be assessed. Methodologies for prognostics developed in other industry sectors, e.g. aerospace, nuclear, will be reviewed for potential application and/or tailoring for purpose. Models for continuous component monitoring for the purpose of prognosis will differ from those for control and diagnosis, and it is envisaged that other non-parametric feature-based models and techniques for quantification of component life linked to particular use-case scenarios will be required to be derived. All members of the consortia have specific individual roles as well as cross-discipline roles and interconnected collaborative activities. The multi-disciplinary nature of the proposed team will ensure that the outputs and outcomes of this consortia working in close collaboration with an Industrial Advisory Committee will deliver research solutions to the HEV issues identified.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.