
University of Manchester
University of Manchester
6 Projects, page 1 of 2
assignment_turned_in Project2015 - 2018Partners:Maastricht University, Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Computer Science, Maastricht University, School of Business and Economics (SBE), United Nations University – Maastricht Economic and Social Research Institute on Innovation and Technology, Universiteit Twente, Techno Centrum voor Onderwijs en Onderzoek, Construction office, Makerere University +14 partnersMaastricht University,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Computer Science,Maastricht University, School of Business and Economics (SBE), United Nations University – Maastricht Economic and Social Research Institute on Innovation and Technology,Universiteit Twente, Techno Centrum voor Onderwijs en Onderzoek, Construction office,Makerere University,Makerere University,Maastricht University,Universiteit Twente,Maastricht University, Faculty of Science and Engineering, MGSOG/UNU-Merit,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,School of Social Science,University of Manchester,Ministry of Gender, Labour and Social Development,School of Social Science,Ministry of Gender, Labour and Social Development,University of Manchester,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Halfgeleider Componenten,Universiteit Twente, Techno Centrum voor Onderwijs en Onderzoek, Electronics and automation,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), ElektrotechniekFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: W 08.390.003In Uganda, the Expanding Social Protection Program (ESP) was set up to establish a national social protection system as a core element in the national planning process and with the objective to reduce vulnerability and enhance productivity. Although there is latent political support for social protection in Uganda, as evidenced by the Presidents recent request to nationally expand the universal social pension, other government stakeholders still view non-contributory social protection solely as consumptive expenditure and not as a strategic investment in human capital. To date, no strong empirical evidence has been generated to demonstrate the potential impact of social protection on human capital and productivity in Uganda. The proposed research will perform a comparative cost-effectiveness analysis of the ESP flagship program SAGE (Social Assistance Grants for Empowerment) and three alternative programs using a mixed-method approach. The main objective is to provide rigorous evidence of the potential inclusive growth effects of social transfers. This will be accomplished by generating empirical evidence of the pathways from social transfers to human capital development, household productive capacities, and local economy outcomes. The research findings will contribute to better policy designs and implementation. The research will also assess the desirability of implementing SAGE at national scale. The ESP secretariat, responsible for SAGE and working under the Ministry of Gender, Labour and Social Protection, is the immediate beneficiary of this research. ESP is a full partner of the consortium contributing to project design and implementation.
more_vert assignment_turned_in Project2021 - 2022Partners:Radboud Universiteit Nijmegen, Universität Hamburg, Universität Hamburg, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut, University of Durham, Department of Physics +14 partnersRadboud Universiteit Nijmegen,Universität Hamburg,Universität Hamburg,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut,University of Durham, Department of Physics,Universität Heidelberg, Zentrum für Astronomie Heidelberg, Landessternwarte Heidelberg-Königstuhl,Universiteit van Amsterdam,Radboud Universiteit Nijmegen,Universität Heidelberg,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy,Leiden University,University of Manchester,University of Manchester,NWO-institutenorganisatie,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sterrewacht Leiden,Rijksuniversiteit Groningen,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy, Radiosterrenwacht,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Anton Pannekoek Instituut voor Sterrenkunde,University of DurhamFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 2020.031The Low Frequency Array (LOFAR) is the world’s largest and most sensitive low frequency radio telescope and a prominent national and international scientific facility. Thanks to its spectral coverage (10-250 MHz) and resolution, it has opened up new areas of studies in astrophysics ranging from the early Universe to transient phenomena, pulsars, solar studies, and galaxy clusters science. After initial processing, the data from the telescope are sent to the LOFAR long-term archive (LTA) for open distribution to the Worldwide community. More than 50 PB of data (~43 PB publicly available) have been delivered to the community through the LTA. Due to intrinsic challenges related to the reduction of low-frequency data, LOFAR has so far attracted mostly expert users and thus its scientific impact has been hindered. Innovative techniques are now available to efficiently and automatically handle these challenges, therefore ASTRON is preparing to offer services to generate science-ready data, which will attract a much wider community of users. This will generate a dramatic increase of the science output from the instrument. This is the aim of the LOFAR Data Valorization (LDV) project, which will apply the innovative reduction routines on all the LOFAR data hosted at SURFsara (~28 PB). The LDV project will follow a staged approach and will last for 3 years. In this proposal, we request SURFsara resources for the first two years of the project to increase the value of the data in the LTA and prepare it for very low frequency (~ 50 MHz) and long-baseline science. Resources for the final step of the project will be requested in a follow-up proposal. LDV will have close and crucial interaction with various granted projects, like EGI-ACE, DICE, ESCAPE, and FUSE. These will help bring to a production level the processing routines and infrastructures currently under development. In this proposal, we request 1,500,000 core hours, 1,100 TB of disk storage, and 600 TB of temporary tape capacity in addition to resources that can be allocated from associated projects to enable a successful conclusion of the initial two phases of the LDV project.
more_vert assignment_turned_in ProjectFrom 2024Partners:Rijksuniversiteit Groningen, Faculteit der Letteren, Research Centre for Media and Journalism Studies, Rijksuniversiteit Groningen, University of ManchesterRijksuniversiteit Groningen, Faculteit der Letteren, Research Centre for Media and Journalism Studies,Rijksuniversiteit Groningen,University of ManchesterFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: VI.Veni.221C.055Social media platforms’ ability to define and govern what is objectionable and desirable (platform content moderation) has reconfigured disputes over free speech worldwide. Yet little is known about the history of these governance regimes – whose interests platforms heeded and ignored as they navigated the unique political, technical, legal, and economic difficulties of policing speech at scale. Tracing this development is crucial to better understand and reform platforms’ power. This project will study the critical moments in the making of moderation rules and use its findings to create guidelines for remaking online speech control, producing open datasets in the process.
more_vert assignment_turned_in ProjectFrom 2025Partners:Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Sterrenkunde, Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sterrewacht Leiden, NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy, Istituto Nazionale di Astrofisica (INAF), Instituto Nazionale di Astrofisica, Osservatorio di Bologna +5 partnersRijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Sterrenkunde,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sterrewacht Leiden,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy,Istituto Nazionale di Astrofisica (INAF), Instituto Nazionale di Astrofisica, Osservatorio di Bologna,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sackler Laboratory for Astrophysics,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy, R&D Laboratory,University of Durham, Department of Physics,Universität Heidelberg, Zentrum für Astronomie Heidelberg, Landessternwarte Heidelberg-Königstuhl,University of ManchesterFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 2024.047The Low Frequency Array (LOFAR) is the world’s largest and most sensitive low frequency radio telescope with unprecedented spectral coverage (10-250 MHz) and resolution. After initial processing, the astronomical data are sent to the LOFAR long-term archive (LTA, currently hosting about 54 PB of data) for distribution to the Worldwide community. The LOFAR Data Valorization (LDV) project will apply innovative reduction routines to the data hosted at SURF, making LOFAR more accessible to users, increasing its science output, and reducing the data volume.
more_vert assignment_turned_in Project2023 - 2025Partners:Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Istituto Nazionale di Astrofisica (INAF), Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sterrewacht Leiden, Rijksuniversiteit Groningen, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut +14 partnersRadboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica,Istituto Nazionale di Astrofisica (INAF),Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Sterrewacht Leiden,Rijksuniversiteit Groningen,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Kapteyn Instituut,Universiteit van Amsterdam,Universität Heidelberg, Zentrum für Astronomie Heidelberg, Landessternwarte Heidelberg-Königstuhl,University of Manchester,Leiden University,NWO-institutenorganisatie,University of Durham, Department of Physics,University of Durham,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Anton Pannekoek Instituut voor Sterrenkunde,Radboud Universiteit Nijmegen,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy, R&D Laboratory,Istituto Nazionale di Astrofisica (INAF), Instituto Nazionale di Astrofisica, Osservatorio di Bologna,Universität Heidelberg,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy,University of ManchesterFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 2022.033The Low Frequency Array (LOFAR) is the world’s largest and most sensitive low frequency radio telescope with unprecedented spectral coverage (10-250 MHz) and resolution. After initial processing, the astronomical data are sent to the LOFAR long-term archive (LTA, currently hosting about 55 PB of data) for distribution to the Worldwide community. The LOFAR Data Valorization (LDV) project will apply innovative reduction routines to the data hosted at SURF, making LOFAR more accessible to users, increasing its science output, and reducing the data volume.
more_vert
chevron_left - 1
- 2
chevron_right