
Council for Scientific and Industrial Research
Council for Scientific and Industrial Research
7 Projects, page 1 of 2
assignment_turned_in Project2011 - 2015Partners:Swedish University of Agricultural Sci, Tropical Ecology Research Institute IRET, University of Oxford, Council for Scientific and Industrial Research, Swedish University of Agricultural Sciences +2 partnersSwedish University of Agricultural Sci,Tropical Ecology Research Institute IRET,University of Oxford,Council for Scientific and Industrial Research,Swedish University of Agricultural Sciences,Tropical Ecology Research Institute IRET,Forestry Research Institute of GhanaFunder: UK Research and Innovation Project Code: NE/I014705/1Funder Contribution: 713,086 GBPWhy do trees in different tropical forests grow at different rates? Why do some trees within a site grow faster than others? At first impression, It seems a reasonable assumption that the 'visible productivity' (e.g. wood production and canopy litterfall) is somehow related to how much carbon and energy the forest or the individual tree captures from photosynthesis, the Gross Primary Productivity (GPP); this assumption is implicit in much of the forest ecology literature, as well as in many biosphere models. When we see explanations as why forests are increasing growth rates in response to global change, or increased productivity after disturbance, we tend to frame these explanations in the context of increased photosynthesis (either because of increased abiotic drivers - e.g. increased light or carbon dioxide, or because of increased photosyntheric capacity, e.g leaf nitrogen content) However, our recent work in Amazonia has indicated that the site-to-site variability in net primary productivity (NPP) in lowland rainforests is not related to how much carbon and energy the forest captures through photosynthesis, but much more determined by how much of that captured carbon used by plants for their internal metabolism (Malhi et al., submitted to Nature), the autotrophic respiration, Ra. This tentative finding has consequences for much of tropical forest research, and global change vegetation models. Moreover, our early results suggest that disturbance is the main determinant of how much an ecosystem allocates to autotrophic respiration, with less autotrophic respiration in disturbed systems. We would now like to explore this topic further in five ways: (i) by exploring in greater detail the spatial and temporal variation of autotrophic respiration; (ii) by greatly increasing the number of sites investigated; (iii) by assessing the extent to which results from Amazonia are generalisable in another biogeographical realm, namely equatorial Africa; (iv) by explicitly exploring how disturbance affects carbon use and allocation by tracking these before and after selective logging; (v) by exploring how much interspecific variation in NPP is determined by autotrophic respiration. The underlying hypotheses we are exploring are that (i) there is no significant site-to-site variation in the GPP of moist tropical lowland forests (within Africa and in comparison to Amazonia), despite variation is soil properties, climate and tree species composition; (ii) there is substantial site-to-site variation in net primary productivity (NPP), and this is mainly driven by shifts in carbon use efficiency (CUE, the proportion of photosynthetic carbon converted to biomass), and (iii) forest CUE increases substantially after disturbance (logging) and subsequently declines over time, and (iv) this shift is driven by differing plastic variation in CUE within surviving individuals, rather than by community replacement. In the process, we will pioneer comprehensive carbon cycle assessment in intact and disturbed African tropical forests, replicated across two contrasting countries, Ghana (West Africa) and Gabon (Central Africa). Our sampling strategy will encompass plots in (i) wet primary forests (2 countries x 2 plots), (ii) moist primary forests (2 countries x 2 plots),(iii) tracking sites before, during and after logging disturbance (2 countries x 2 plots), and (iv) plots recovering from logging disturbance 10, 15 and 20 years ago (2 countries x 2 plots). At all sites we will collect 2.0-2.5 years of data. Our project will provide substantial scientific capacity building in Ghana and Gabon,we will train and utilise 6 student field researchers (3 full time, 3 part-time) in each country, and hold wider-reach training workshops in carbon cycle science in each country at the start and end of the project. this event.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f7786b13d4c4035671f5dcb8377f2e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f7786b13d4c4035671f5dcb8377f2e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2014Partners:Council for Scientific and Industrial Research, Council for Scientific and Industrial Research, Council for Sci and Ind Res CSIR SA, Newcastle University, Water Research Institute (CSIR) +3 partnersCouncil for Scientific and Industrial Research,Council for Scientific and Industrial Research,Council for Sci and Ind Res CSIR SA,Newcastle University,Water Research Institute (CSIR),Water Research Institute (CSIR),Newcastle University,Council for Sci and Ind Res CSIR SAFunder: UK Research and Innovation Project Code: NE/L002019/1Funder Contribution: 66,116 GBPThe volume of groundwater in Africa is more than 100 times the annual renewable freshwater resource and 20 times the amount of freshwater stored in lakes, but its productive use in sub-Saharan Africa (SSA) remains low. Global abstraction of groundwater increased tenfold between 1950 and 2000 and contributed significantly to growth in irrigation particularly in Asia. The global area equipped for irrigation has been estimated as 301 Mha of which 38% depends on groundwater, but for sub-Saharan Africa (SSA) only 5.7% of the irrigated area is supported by groundwater. Just as in Asia, rapid expansion of groundwater irrigation may be about to occur in SSA. Although evidence from Asia suggests that groundwater irrigation promotes greater inter-personal, inter-gender, inter-class and spatial equity than is found under large scale canal irrigation, there is a significant risk that rapid development of groundwater resources in SSA may lead to inequitable resource use. There is a need for research to deliver the evidence and appropriate tools to support sustainable resource management and to assure access to groundwater resources by poor people. This research will address the following questions: 1: How and at what rate is groundwater being recharged? Deliverable: improved understanding of recharge processes at local and catchment scale; including consideration of influence of land use and water harvesting. 2: Can a tool be developed to help decision makers manage the resource? Deliverable: tools developed and tested at local (community) and catchment scales to assist decision makers in managing groundwater resources. 3: What are the implications of changes in land use? Deliverable: improved understanding of evidence base for influence of land use, water harvesting and green water flows on groundwater recharge. 4: What are the implications of climate change? Deliverable: tools for downscaling climate data and constructing scenarios developed and likely influence on recharge processes investigated. 5: How can policy and practice assure livelihood benefits for poor people? Deliverable: improved understanding of issues affecting access to and control of groundwater for productive use in irrigated agriculture. 6: What governance approaches are most likely to deliver equitable and sustainable use of groundwater? Deliverable: participatory evaluation of institutional change required at local community level and at national/catchment level to achieve equitable and sustainable use of groundwater in irrigated agriculture. Preliminary research will be delivered over a 1 year period by a multi-disciplinary research team from Newcastle University and the International Water Management Institute together with local partners in Ethiopia, Ghana and South Africa. This will deliver a pilot study and build the research consortium. The pilot study in Ethiopia will address both technical and social/governance aspects of groundwater resource assessment and management from the regional to the local scale. Lake Tana basin has been selected as a suitable site. In parallel, additional exploratory research will be conducted in Ethiopia, Ghana and South Africa. Key stakeholders will be invited to participate in consultations at in-country workshops aimed at understanding current state of knowledge around groundwater resources. Critical knowledge gaps likely to influence design of follow-up research will be identified and in-country collaborators will be commissioned to carry out short term studies. At the end of the 1-year catalyst grant project collaborating scientists representing partners from SSA together with UNEW and IWMI will meet for 3-day workshop in Addis Ababa in order to review lessons learned and agree design of the follow-on 4-year research project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9d447d8682ddca519669d87c2e5aba3e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9d447d8682ddca519669d87c2e5aba3e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2017Partners:Council for Scientific and Industrial Research, OU, University of Oxford, The University of Texas at Austin, British Ecological Society +4 partnersCouncil for Scientific and Industrial Research,OU,University of Oxford,The University of Texas at Austin,British Ecological Society,BES,Imperial College London,Forestry Research Institute of Ghana,The Open UniversityFunder: UK Research and Innovation Project Code: NE/K005294/1Funder Contribution: 431,630 GBPIncoming solar irradiance ultimately governs the amount of energy within the Earth's system. Our understanding of how solar irradiance is modulated by the Earth's orbital pathway underpins our understanding of long-term (>10,000 year) global climate and vegetation change through the geological record. However, there is no independent long-term record empirical record of solar irradiance on timescales >10,000 years. Our proposal is designed to generate the first record of solar irradiance change at the Earth's surface by applying cutting-edge organic geochemical techniques to a unique tropical record of past vegetation change. Current understanding of solar flux is based upon changes observed in cosmogenic isotopes (10Be and 14C); however, the temporal range over which these techniques can be applied is limited by the half-lives of the respective isotopes. Recent advances in our understanding of pollen/spore chemical composition indicate that a signature of maximum Ultra Violet-B (UV-B) radiation exposure during growth is locked-in, and preserved, within the sporopollenin chemical structure [1]. As UV-B is directly proportional to total incoming solar irradiance this offers an opportunity to extract a long-term record of solar irradiance flux from the fossil pollen/spore record. During the Quaternary period (last 2.6 million years) orbital forcing has been identified as particularly important in relation to climate and vegetation change associated with glacial-interglacial cycles [2]. However, due to a paucity of appropriate study sites our understanding of terrestrial vegetation change over multiple glacial-interglacial cycles remains limited. New fossil pollen/spore data from a continuous c. 1 million year sedimentary record recovered from Lake Bosumtwi (Ghana), recovered by the International Continental Scientific Drilling Program, provides the first terrestrial record of vegetation change in Africa during this period [3]. The Lake Bosumtwi study site offers an ideal opportunity to assess how solar insolation, climate and vegetation have changed through time because it is well placed to record changes in the global climate system (Inter Tropical Convergence Zone, monsoon) and vegetation (shifts between forest and savannah biome are observed in the fossil pollen record). We will use Fourier Transformed Infra-Red spectroscopy to analyse the chemical structure of c. 15,000 pollen/spores extracted from 500 different depths (ages) in the Lake Bosumtwi sediment record over the last 500,000 years. By characterizing past change in solar irradiance at the Earth's surface and comparing chemical change with existing model and vegetation data we will provide new insights into the pattern of change. The independent record of solar irradiance will allow climate and vegetation change inferences to be decoupled within the fossil record. Therefore, we will have the potential to determine leads and lags (causality) within the Earth's system, e.g. how do shifts in climate systems related to vegetation change. The research team have all the requisite skills and experience to deliver the proposal: Gosling (PI OU) has worked on past environmental change in the tropics for 12 years and has worked on Lake Bosumtwi sediments since 2007; Lomax (PI Univ. Nottingham) and Fraser (Res Co-I OU) are organic geochemists who have pioneered research into pollen/spore chemical composition change and its preservation in the geological record. The Centre for Earth, Planetary, Space & Astronomical Research (The OU) will provide the required facilities and research environment. REFS: [1] Lomax, B.H. et al., Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geosci., 2008. 1: 592-596. [2] Hays, J.D. et al., Variations in the Earth's orbit: Pacemaker of the ice ages. Science, 1976. 194: 1121-1132. [3] Koeberl, C., et al., The 2004 ICDP Bosumtwi Crater Drilling Project. Meteorit. Planet. Sci., 2007. 42: 483-511.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::655805c93a08488d7d26803ebca1f4aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::655805c93a08488d7d26803ebca1f4aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2027Partners:Northern Arizona University, Sabah Forestry Department, James Cook University, Ghent University, Mato Grosso State University (Unemat) +7 partnersNorthern Arizona University,Sabah Forestry Department,James Cook University,Ghent University,Mato Grosso State University (Unemat),UGent,University of Leeds,LU,IISER, Pune (Indian Inst Sci Edu & Res),Kerala Forest Research Inst (KFRI),University of Edinburgh,Council for Scientific and Industrial ResearchFunder: UK Research and Innovation Project Code: NE/Y00163X/1Funder Contribution: 852,044 GBPEarth's tropical forests provide an array of ecosystem services, housing over 50% of global biodiversity, taking up 8-13% of annual anthropogenic CO2 emissions, recycling rainfall at continental scales and directly providing livelihoods to millions of people. The biological and ecological processes that sustain these services (e.g. photosynthesis and transpiration) are strongly climate-sensitive, such that the future large-scale functioning of tropical forests depends on keeping their climate space within safe operating limits. Currently we do not know what the safe operating temperature limits for tropical forests are nor how close they are to upper limits of temperature function. There are three main reasons for this: 1) different plant processes are subject to different temperature thresholds - e.g. there are optimal temperatures for photosynthesis and also temperatures at which the photosynthetic apparatus begin to break down, but large data gaps prevent us from understanding how these limits vary across tropical forests and species 2) even for species where we do know the temperature thresholds for key physiological functions (e.g. breakdown of photosynthesis machinery), we usually do not have the leaf temperature records that allow us to gauge how close tropical trees are to these thresholds. The distinction between leaf and air temperature is key here - leaf temperatures are the physiologically meaningful measure of temperature and can be substantially different to air temperatures 3) we do not know what leaf-level metrics of temperature tolerance mean for the performance of the whole plant in terms of growth and mortality. It is unclear whether leaf traits can predict risk of heat-induced mortality. Temperature can affect plant performance directly (e.g. by reducing photosynthetic rate) but also indirectly by increasing the vapour pressure difference between the air and leaves (leaf-to-air vapour pressure deficit). Higher VPD increases plant water losses due to greater atmospheric demand for water but also results in reduced stomatal conductance and carbon assimilation rates. Recent studies have suggested that increasing tree mortality patterns observed in some temperate and tropical zones may be driven by increasing VPD. However, no study to date has sought to isolate the role of direct temperature effects vs. indirect VPD effects in inducing heat stress-driven mortality. THERMOS will address each of these current bottlenecks to deliver unprecedented large-scale insights into the thermal risk of tropical forests. To do this, a diverse set of complementary methodologies will be used including: 1) extensive field data collection in tropical forests in four continents to determine the high temperature thresholds of key plant processes, 2) drone-based thermal imaging to determine maximum leaf temperatures reached in different sites, 3) new extreme heating greenhouse experiments to test the ability of leaf thermal traits to predict mortality and to evaluate the importance of direct vs. indirect VPD effects in driving mortality, 4) remote sensing to determine how thermally 'safe' forests are across the Tropics and 5) analysis of forest dynamics records to evaluate the role of increasing temperature and VPD in driving increased mortality across tropical forests.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b897cafba84b94a3c92927c8cdd861c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b897cafba84b94a3c92927c8cdd861c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2020Partners:University of Montpellier 1, University of Oxford, University of the State of Mato Grosso, Council for Scientific and Industrial Research, The University of Arizona +9 partnersUniversity of Montpellier 1,University of Oxford,University of the State of Mato Grosso,Council for Scientific and Industrial Research,The University of Arizona,Pontifical Catholic University of Peru,Forestry Research Institute of Ghana,Mato Grosso State University,James Cook University,University of Montpellier,Catholic University of Peru (PUCP),JCU,University of Montpellier 1,UAFunder: UK Research and Innovation Project Code: NE/P012337/1Funder Contribution: 381,239 GBPThe basic shape and branching structure of a tree can be distinctive and characteristic, yet there exists no consistent dataset quantifying how tree form varies across species and how it is related to other functional traits of a tree. Understanding the variation in structure and form of trees is important in order to link tree physiology to tree performance, scale fluxes of water and carbon within and among trees, and understand constraints on tree growth and mortality. These topics hold great importance in the field of ecosystem science, especially in light of current and future changes to climate. It is surprising, therefore, that tree structure and form are currently neglected areas of study. There are two primary reasons for this neglect: 1) it is difficult and time-consuming to quantify tree structure in-situ and 2) there is a lack of theory that explicitly links tree form parameters with physiological function. Recent developments in technology and theory now enable us to overcome these limitations. In this proposal we aim to use new ground-based 3D terrestrial laser scanning technologies (TLS) in combination with recently developed theoretical frameworks to measure and compare tree architecture. We focus on the tropics, since (i) they host the vast majority of broadleaf tree diversity and play a disproportionate role in global and regional carbon and water fluxes, and (ii) the high species diversity of tropical forests (typically 100-250 tree species per hectare) means we can sample a large number of species under almost identical climate and soil conditions, making it more likely to detect overall tendencies in tree form response to environment that are not dominated by the peculiarity of a particular species. Specifically, we will employ TLS to collect highly-detailed 3D structural information from mature rainforest trees spanning contrasting environments ranging from cloud forests to wet rainforests to dry savanna, and contrasting biogeographical histories from the cloud forests of the Andes through legume-dominated forests of Amazonia and Africa, through the dipterocarp-dominated tall forests of Borneo, to the ancient rainforest flora of Australia. All field sites are locations where we have already collected information of the leaf and wood traits of a number of tropical trees. We plan to achieve three goals: i) definition of quantitative classes of tree form using advanced imaging and computational techniques, ii) development of an understanding of the degree of covariance between tree form and tree leaf and wood functional traits, and the degree of phylogenetic constraint and plasticity in tree form, iii) testing and refinement of metabolic-scaling based approaches to scaling fluxes and productivity of tropical tree communities. Over the course of three years our team will: 1) Create a database of branch- and canopy-level trait data collected from our field campaigns. 2) Use variation in branching architecture and canopy structure traits to define a suite of branching and canopy traits that allow for the classification of tree form. 3) Assess the scaling of tree form traits within trees and integrate the scaling of tree-form into a mechanistic plant scaling framework. 4) Explore the link between tree-form traits and leaf and wood traits to determine a whole-tree integrated economics spectrum. In doing so, we hope to acquire a mechanistic understanding of the relationship between tree form, function, phylogeny and environment over a large spatial scale. We expect to find that behind the dazzling variety of shapes and forms found in trees hides a remarkably similar architecture based on fundamental, shared principles.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57133df6b2a22a22cc748a20b166b9a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57133df6b2a22a22cc748a20b166b9a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right