Powered by OpenAIRE graph
Found an issue? Give us feedback

Laser Cladding Technology Ltd (LCT)

Laser Cladding Technology Ltd (LCT)

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/M023044/1
    Funder Contribution: 710,729 GBP

    In order to improve the management of railway networks and provide the timetables that passengers demand throughout the week, track components with greater durability that are easier to maintain are essential. With these in place less access will be needed to the track, keeping it free for trains. The aim of this project is, through the use of process modelling and full-scale testing and modelling, to enable the effective design of a laser clad layer of premium material for application to a range of track components to reduce wear and the likelihood of rolling contact fatigue occurring. These are the two most prolific damage mechanisms in railway track. A major goal of the project is to comprehensively study the behaviour of cladded components on a test track to validate the modelling and laboratory work. The technique, as well as improving component life and reducing maintenance needs, will reduce costs by allowing lower grade rail material to be used and also in-situ repairs could be facilitated eventually, negating the need for components to be removed from track when they reach the end of their life. The project, while focussed on railway track applications will also consider vehicle components in parallel activity and ensure that the knowledge and fundamental knowledge gained on the integrity of cladded components through multi-scale modelling of different geometries and cladding parameters is transferred to other sectors where cladding is used, such as energy, oil and gas and aerospace.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K030884/1
    Funder Contribution: 5,571,750 GBP

    A Centre for Innovative Manufacture in Laser-based Production Processes is proposed. This Centre will exploit the unique capabilities of laser light to develop new laser-based manufacturing processes, at both micro and macro levels, supported by new laser source, process monitoring and system technologies. The past 25 years has seen industrial lasers replace many 'conventional' tools in diverse areas of manufacture, enabling increased productivity, functionality and quality, where for example laser processing (cut/join/drill/mark) has revolutionised automotive, aerospace and electronics production. However the penetration of laser technology into some areas such as welding and machining has been less than might have been anticipated. But recently there has been a significant 'step change-opportunity' to take laser-based processing to a new level of industrial impact, brought about by major advances in laser technology in two key areas: (i) A new generation of ultra-high quality and reliability lasers based around solid state technology (laser diode and optical fibre) has evolved from developments in the telecoms sector. These lasers are leading to systems with very high levels of spatial and temporal controllability. This control, combined with advanced in-process measurement techniques, is revolutionising the science and understanding of laser material interactions. The result of this is that major improvements are being made in existing laser based processes and that new revolutionary processes are becoming viable, e.g. joining of dissimilar materials. (ii) A new generation of high average power laser technologies is becoming available, offering controllable trains of ultrashort (picosecond and femtosecond) pulses, with wavelengths selectable across the optical spectrum, from the infrared through to the ultra-violet. Such technology opens the door to a whole range of new laser-based production processes, where thermal effects no longer dominate, and which may replace less efficient 'conventional' processes in some current major production applications. These new developments are being rapidly exploited in other high-value manufacturing based economies such as Germany and the US. We argue that for the UK industry to take maximum advantage of these major advances in both laser material processing and machine technology there is an urgent requirement for an EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes. This will be achieved by bringing together a multi-disciplinary team of leading UK researchers and key industry partners with the goal of exploiting 'tailored laser light'. Together with our industrial partners, we have identified 2 key research themes. Theme A focuses on Laser Precision Structuring, i.e. micro-machining processes, whilst Theme B is focused on joining and additive processes. Spanning these themes are the laser based manufacturing research challenges which fall into categories of Laser Based Production Process Research and Laser Based Machine Technologies, underpinned by monitoring and control together with material science. Research will extend from the basic science of material behaviour modelling and laser-material interaction processes to manufacturing feasibility studies with industry. The Centre will also assume an important national role. The Centre Outreach programme will aim to catalyse and drive the growth of a more effective and coherent UK LIM community as a strong industry/academia partnership able to represent itself effectively to influence UK/EU policy and investment strategy, to promote research excellence, and growth in industrial take-up of laser-based technology, expand UK national knowledge transfer and marketing events and improve the coordination and quality of education/training provision.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.