
URS/Scott Wilson
URS/Scott Wilson
Funder
20 Projects, page 1 of 4
assignment_turned_in Project2009 - 2012Partners:Colas Ltd, LafargeHolcim (United Kingdom), Scott Wilson, Shell Bitumen UK Ltd, County Surveyors Society +19 partnersColas Ltd,LafargeHolcim (United Kingdom),Scott Wilson,Shell Bitumen UK Ltd,County Surveyors Society,URS Corporation (United Kingdom),County Surveyors Society,Akzo Nobel,Highways Agency,Lafarge Aggregates,AkzoNobel,Aggregate Industries,Highways Agency,Colas Ltd,NTU,URS/Scott Wilson,Shell Research UK,LafargeHolcim Group (UK) (Aggregate Ind),Hanson Brick Ltd,Lafarge Aggregates Limited,University of Nottingham,Hanson Brick Ltd,Shell Bitumen UK Ltd,Akzo NobelFunder: UK Research and Innovation Project Code: EP/G039100/1Funder Contribution: 296,109 GBPThe overall aim of this research is to use a combination of thermodynamic surface free energy and adhesion fracture energy measurements to understand, predict and enhance the resistance to moisture-damage of asphalt mixture pavement materials. Moisture-damage of asphalt mixtures is directly associated with the adhesive and cohesive properties of the material and how the presence of water affects these mechanisms. Although mechanical test procedures exist to quantify the moisture-damage of asphalt mixtures, they do not measure the fundamental material properties related to adhesion and cohesion. This study will use a combination of adhesive fracture energy measurements on bitumen-aggregate and bitumen-filler mastic-aggregate systems using monotonically-loaded tests together with intrinsic adhesion calculations based on thermodynamic surface free energy concepts to produce a step change in the moisture-damage performance and material screening of asphalt mixtures. The introduction and development of these new methods and novel approaches will provide the tools needed for the better selection and moisture-damage prediction of appropriate pavement materials. The study will involve collaboration between researchers working in the areas of pavement engineering materials and the mechanical engineering aspects of adhesion, adhesives and composites. This combined approach will allow the exceptionally high expertise in asphalt technology, moisture-damage characterisation, surface energy and adhesive bond testing and modelling to contribute effectively to improving the understanding and prediction of moisture-damage in asphalt mixtures and thereby provide a tool to achieve the project goal of enhancing moisture-damage performance.
more_vert assignment_turned_in Project2006 - 2011Partners:Mace Ltd, Xaar Americas Inc, TATA Motors Engineering Technical Centre, 3T RPD Ltd, Olivetti I-Jet +376 partnersOnly 199 Partners of A Centre for Innovative Manufacturing and Construction are shown here.Mace Ltd,Xaar Americas Inc,TATA Motors Engineering Technical Centre,3T RPD Ltd,Olivetti I-Jet,SODA Project,Krause Automation,Motor Insurance Repair Research Centre,Ricardo UK,3D Systems Inc,Rolls-Royce Plc (UK),Hapold Consulting Ltd,Tesco,Bafbox Ltd,NCAR,Charnwood Borough Council,ArvinMeritor Automotive Light Vehicle,Autoliv Ltd,StubbsRich Ltd,Rim-Cast,SIEMENS PLC,CMP Batteries Ltd,Rozone Limited,Jaguar Cars,ManuBuild,Bafbox Ltd,National Physical Laboratory NPL,IPLON GMBH - THE INFRANET COMPANY,BT Group Property,Inst for Surface and Boundary Layers,Charnwood Borough Council,SODA Project,Boeing Co,Marylebone Cricket Club,AMEC,Huntleigh Healthcare Ltd,Delcam International plc,Terraplana,UK Sport,ITESM,Georgia Institute of Technology,Head Sport AG,TRW Conekt,Marden Edwards Ltd,Steel Construction Institute,Autoliv Ltd,Mouchel Parkman,EMDA,InfoVision Systems Ltd.,Ontology Works Inc,Exide Technologies,Collins and Aikman Ltd,Leicester Glenfield Hospital,Rozone Limited,Textile Recycling Association,BPB plc,John Laing Plc,Development Securities Plc,Giddings and Lewis INC,Collins and Aikman Ltd,Licensing Executive Society Intl LESI,TNO Industrial Technology,Schneider Electric (Germany),Laser Optical Engineering Ltd,Scott Wilson Ltd,Wates Construction,Fully Distributed Systems (United Kingdom),TRW Conekt,ThyssenKrupp Krause GmbH,BRE Group (Building Res Establishment),GlaxoSmithKline (Harlow),3T Additive Manufacturing Ltd,Hopkinson Computing Ltd,Econolyst Ltd,Lend Lease,Marylebone Cricket Club,Aptiv (United Kingdom),TNO Industrial Technology,Toyota Motor Europe,NPL,Novel Technical Solutions,BAE Systems,Leicestershire County Cricket Club,FORD MOTOR COMPANY LIMITED,Motor Industry Research Assoc. (MIRA),BT Group Property,Shepherd Construction Ltd,Capita,GSK,Bae Systems Defence Ltd,Cross-Hueller Ltd,CWV Group Ltd,In2Connect Ltd,Engage GKN,Datalink Electronics,Penn State University College of Medicin,Goodrich Actuation Systems,Siemens PLMS Ltd,Dept for Env Food & Rural Affairs DEFRA,LOE,Lawrence M Barry & Co,Birmingham City Council,Nike,The European Recycling Company,British Gypsum Ltd,Arup Group,John Laing Plc,Siemens Transportation,Boeing Co,Lenze UK Ltd.,Renishaw plc (UK),North West Aerospace Alliance,STI,Ove Arup & Partners Ltd,Regentec Limited,Let's Face It,Huntsman Advanced Materials UK Ltd,National Centre for Atmospheric Research,The European Recycling Company,Capita Symonds,Delphi Diesel Systems Ltd,B H R Group Ltd,Mace Ltd,Buro Happold,Leicestershire County Cricket Club,Pentland Group plc,Rover Group Ltd,ArvinMeritor Automotive Light Vehicle,CSC (UK) Ltd,GlaxoSmithKline PLC,AMEC,BT Group,Capita Symonds,Fergusons Irish Linen & Co.Ltd,Diameter Ltd,Clarks,Edwards,Invotec Group LTD,3D Systems Inc,CSC (UK) Ltd,Ordnance Survey,Z Corporation,In2Connect Ltd,Lamb Technicon UK,TAP Biosystems,Shotcrete,Schneider Electric (France),Reid Architecture,Engage GKN,Beta Technology Limited,adidas-Salomon AG,Bosch Rexroth Corporation,InfoVision Systems Ltd.,MG Rover Group Ltd,Singapore Institute of Mfg Technology,Huntsman (United Kingdom),Qioptiq Ltd,RENISHAW,Clarks,Simons Design,World Taekwondo Federation,CIRIA,Penn State University,Sulzer Chemtech (UK) Ltd,GAS-UK,Loughborough University,PIRA,Clamonta Ltd,Laser Optical Engineering,Real-Time Innovations,Bovis Lend Lease,Helm X,NTU,Emergent Systems,TRA,Parker Hannifin Plc,Faber Maunsell,Dunlop Slazenger,Rojac Patterns Ltd,DEGW,Delphi Diesel Systems,Toyota Motor Europe NV SA,Rim-Cast,Buildoffsite,Reid Architecture,Rexroth Bosch Group,GE Aviation,Schneider Electric GmbH,S M M T,Putzmeister UK,AECOM,Mott Macdonald (United Kingdom),Ford Motor Company,Smithers Pira,BIRMINGHAM CITY COUNCIL,SCI,Ontology Works Inc,Monterrey Institute of Technology,SMRE,URS/Scott Wilson,Coventry University,Zytek Group Ltd,Webster Components Ltd,Interserve Project Services Ltd,Mott Macdonald UK Ltd,University of Nottingham,East Midlands Development Agency,ThyssenKrupp Krause GmbH,VTT ,Krause Automation,Datalink Electronics,TME,RTI,National Cricket Centre,The DEWJOC Partnership,MCP Equipment,Ford Motor Company,Sulzer Chemtech (UK) Ltd,VTT Technical Research Centre of Finland,Econolyst Ltd,BAE Systems (Sweden),Solidica Corp,Delcam International plc,Putzmeister UK,Lawrence M Barry & Co,Knibb Gormezano & Partners,Nottingham University Hospitals Charity,Fergusons Irish Linen & Co.Ltd,adidas Group (International),Nike,British Telecom,OS,National Ctr for Atmospheric Res (NCAR),Pentland Group plc,MCP Equipment,National Cricket Centre,Hopkinson Computing Ltd,Z Corporation,Interserve Project Services Ltd,Tesco,Critical Pharmaceuticals,Terrapin Ltd,TAP Biosystems,Simons Design,Rolls-Royce (United Kingdom),Delcam (United Kingdom),Mechan Ltd,World Taekwondo Federation,New Balance Athletic Shoes,Fraunhofer -Institut für Grenzflächen-,JAGUAR LAND ROVER LIMITED,Xaar Americas Inc,CIRIA,EMCBE and CE,Zytek Group Ltd,RFE International Ltd,JCB Research Ltd,EOS,Dunlop Slazenger,Saint-Gobain Weber Ltd,MIRA Ltd,Invotec Circuits,Parker Hannifin Plc,Environment Agency,Aptiv (Ireland),Prior 2 Lever,UK Sport,Nottingham Uni Hospitals NHS Trust,CWV Group Ltd,BAE Systems (United Kingdom),Building Research Establishment (BRE),Exide Technologies (United Kingdom),Highbury Ltd,CRITICAL PHARMACEUTICALS,Novel Technical Solutions,Giddings and Lewis INC,Lenze UK Ltd.,University Hospitals of Leicester NHS Trust,Soletec Ltd,SAIC,CSW Group,JCB Research Ltd (to be replaced),M I Engineering Ltd,USC,AMTRI,Health and Safety Executive (HSE),Surface Technology International Ltd,EMCBE and CE,Singapore Institute of Manufacturing Tec,Buro Happold Limited,HEAD Sport GmbH,University of Southern California,URS Corporation (United Kingdom),Buildoffsite,Mechan Ltd,Smmt Industry Forum,Fully Distributed Systems Ltd,Clamonta Ltd,Rojac Patterns Ltd,Arup Group Ltd,AMTRI,Mowlem Plc,Smmt Industry Forum,StubbsRich Ltd,Solidica Corp,DEGW,TLON GmbH - The Infranet Company,BT Group,Boeing (International),DEFRA Environment Agency,British Gypsum Ltd,Beta Technology Ltd,Birmingham City Council,Edwards,Rohm and Haas Electronic Materials Ltd,Mouchel Parkman,Siemens Transportation,Mouchel Group,Terrapin Ltd,Terraplana,Nottingham University Hospitals Trust,London Borough of Bromley Council,Galorath Affiliates Ltd,VTT Technical Research Centre of Finland,Galorath Affiliates Ltd,Mowlem Plc,Coventry University,Health and Safety Executive,Huntsman Advanced Materials UK Ltd,Huntleigh Healthcare Ltd,Development Securities Plc,PSU,Prior 2 Lever,Henkel Loctite Adhesives Ltd,Locate Bio (United Kingdom),Shepherd Construction Ltd,Motor Insurance Repair Research Centre,TRW Automotive Technical Centre,Faber Maunsell,SAIC,Webster Components Ltd,Loughborough University,CSW Group,Saint-Gobain Weber Ltd,ME Engineering Ltd,Helm X,New Balance Athletic Shoes,Jaguar Cars,S M M T,Henkel Loctite Adhesives Ltd,The DEWJOC Partnership,London Borough of Camden,RFE International Ltd,GT,Emergent Systems,North West Aerospace Alliance,GE (General Electric Company) UK,Lamb Technicon UK,Hapold Consulting Ltd,Next Plc,Olivetti I-Jet SpA,L S C Group Ltd,ManuBuild,BPB plc,Knibb Gormezano & Partners,QinetiQ,Bosch Rexroth Corporation,Next Plc,SIT,Manchester City Football Club,TRW Automotive Technical Centre,MIRA LTD,Rohm and Haas Electronic Materials Ltd,École Centrale de Lille,Cross-Hueller Ltd,Rolls-Royce (United Kingdom),Let's Face It,Manchester City Football Club,EOS GmbH - Electro Optical Systems,Shotcrete,SOLARTECH LTDFunder: UK Research and Innovation Project Code: EP/E002323/1Funder Contribution: 17,848,800 GBPThe Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.
more_vert assignment_turned_in Project2009 - 2014Partners:One NorthEast Regional Develop't Agency, Durham University, Environment Agency, English Partnerships, DEFRA +29 partnersOne NorthEast Regional Develop't Agency,Durham University,Environment Agency,English Partnerships,DEFRA,Groundwork East Durham,British Geological Survey,Academy for Sustainable Communities,County Durham Primary Care Trust,County Durham Primary Care Trust,Academy for Sustainable Communities,EA,NWL,Communities and Local Government,URS/Scott Wilson,PHE,Durham Photonics,NEWCASTLE CITY COUNCIL,DHSC,One NorthEast Regional Develop't Agency,Durham County Council,Newcastle City Council,Newcastle City Council,English Partnerships,Durham County Council,PUBLIC HEALTH ENGLAND,Groundwork East Durham,NERC British Geological Survey,Public Health England,URS Corporation (United Kingdom),Durham University,Scott Wilson,Northumbrian Water Group plc,Durham PhotonicsFunder: UK Research and Innovation Project Code: EP/G028958/1Funder Contribution: 1,012,000 GBPROBUST stands for Regeneration Of Brownfield Using Sustainable Technologies. 'Brownfield' is land which has been previously developed, sometimes for industrial purposes, as opposed to 'greenfield' which has never been developed. Brownfield land is sometimes contaminated with industrial pollutants. The majority of new buildings in the 21st Century will be built on brownfield land as the Government is trying to preserve greenfield land. Many brownfield sites require the removal of industrial pollutants (remediation) before they can be redeveloped. Low-value (in commercial terms) brownfield land is often of less interest to property developers and only marginally polluted but these sites are often situated in the heart of communities and provide people's nearest countryside. For this reason, they may have a significant impact on people's health and wellbeing. ROBUST will engage with local communities to reclaim and remediate these low-value brownfield sites with the aim of improving the local environment and enhancing wellbeing.The sustainable technologies in ROBUST involve using 'waste' products from industry. The 'wastes' are actually valuable minerals which have excellent soil remediation properties; these minerals such as manganese oxide are already naturally present in soil and form a large part of the soil's natural defence system against man-made industrial pollution. These minerals will be added to the soil on brownfield land and will help transform organic contaminants such as petrol into harmless byproducts and immobilise any metal contaminants deep within the ground. Using 'waste' products means sending less to landfill and extracting smaller quantities of primary aggregates all of which makes our Society more sustainable.ROBUST will also develop a new piece of field equipment for quicker and safer data collection on contaminants at brownfield sites. We will be using the newly discovered far-infrared terahertz radiation to 'see' contaminants on site. This radiation is completely safe and has wavelengths just beyond visible light. Unlike other forms of radiation (such as ultraviolet radiation) terahertz is very good at identifying contaminants without any interference effects from the background soil. Not only will the new device revolutionise site investigation work, thereby saving the contaminated land industry hundreds of thousands of pounds (by reducing uncertainty about where to drill boreholes and where to remediate) but it will also allow a vast improvement in our understanding of how contaminants interact with minerals in soil. We are particularly interested in how brownfield land remediation technologies will react to various climate change scenarios such as flooding.Pilot studies of the sustainable technologies will be carried out in large Perspex cubic containers where the public will be able to observe a cross-section of the brownfield land (both the soil and the vegetated surface e.g. grass). Leachate generated by rain passing through the soil will tell us about how contaminants move within the soil. The improved data collection provided by the new terahertz field equipment will provide sufficient information to carry out detailed computer modelling of how the contaminants in the soil interact with the remediative mineral. The computer model will help to reduce uncertainty about both public and environmental health risks associated with brownfield regeneration as well as understand how the remediated soil will be affected by events such as flooding which are now happening more often due to climate change.ROBUST aims to work with local communities in a two-way exchange of information. Local communities often hold large quantities of information on brownfield land and can help engineers to understand what and where pollutants might be on site. Local communities can also help engineers understand their perceptions of the site and their ambitions for what end-use they envisage for the site.
more_vert assignment_turned_in Project2009 - 2018Partners:British Telecommunications plc, Network Rail Ltd, Ordnance Survey, AOS Technology Ltd, Trinity House +61 partnersBritish Telecommunications plc,Network Rail Ltd,Ordnance Survey,AOS Technology Ltd,Trinity House,NOTTINGHAM SCIENTIFIC LTD,Thales Research and Technology UK Ltd,BBC,GCS,SERCO,SERCO,Microsoft Research,Trinity House,Innovate UK,Microsoft Research Ltd,PARC,Logica Plc,AVANTI COMMUNICATIONS LTD,Thales Aerospace,HP Research Laboratories,Aerial,Nokia Research Centre,Hewlett-Packard Ltd,Scott Wilson,TRTUK,Guidance Group (UK),IBM,BT Group (United Kingdom),British Telecom,Aerial,Blast Theory,Serco Technical & Assurance Services,Nottingham Scientific (United Kingdom),Logica Plc,Eurocontrol,OS,UKRI,URS/Scott Wilson,Active Ingredient,Active Ingredient,Xerox (United States),Palo Alto Research Center,fhios ltd,URS Corporation (United Kingdom),Eurocontrol,Nottingham Scientific Ltd,Blast Theory,NTU,MICROSOFT RESEARCH LIMITED,Microsoft Research,HP Research Laboratories,The Corporation of Trinity House,Airbus (United Kingdom),innovITS,University of Nottingham,T R L Technology Ltd,IBM Watson Research Centre,Location and Timing KTN,EADS Astrium,innovITS,BBC New Media,Nokia Research Centre,fhios ltd,Network Rail Ltd,HW Communications Ltd,EADS AstriumFunder: UK Research and Innovation Project Code: EP/G037574/1Funder Contribution: 5,703,940 GBPThe emergence of a global ubiquitous computing environment in which each of us routinely interacts with many thousands of interconnected computers embedded into the everyday world around us will transform the ways in which we work, travel, learn, entertain ourselves and socialise. Ubiquitous computing will be the engine that drives our future digital economy, stimulating new forms of digital business and transforming existing ones.However, ubiquitous computing also carries considerable risks in terms of societal acceptance and a lack of established models of innovation and wealth creation, so that unlocking its potential is far from straightforward. In order to ensure that the UK reaps the benefits of ubiquitous computing while avoiding its risks, we must address three fundamental challenges. First, we need to pursue a new technical research agenda for the widespread adoption of ubiquitous computing. Second, we must understand and design for an increasingly diverse population of users. Third, we need to establish new paths to innovation in digital business. Meeting these challenges requires a new generation of researchers with interdisciplinary skills in the technical and human centred aspects of ubiquitous computing and transferable skills in research, innovation and societal impact.Our doctoral training centre for Ubiquitous Computing in the Digital Economy will develop a cohort of interdisciplinary researchers who have been exposed to new research methods and paradigms within a creative and adventurous culture so as to provide the future leadership in research and knowledge transfer that is necessary to secure the transformative potential of ubiquitous computing for the UK digital economy. To achieve this we will work across traditional research boundaries; encourage students to adopt an end-to-end perspective on innovation; promote creativity and adventure in research; and place engagement with society, industry and key stakeholders at the core of our programme.Our proposal brings together a unique pool of researchers with extensive expertise in the technologies of ubiquitous and location based computing, user-centred design, societal understanding, and research and training in innovation and leadership. It also involves a wide spectrum of industry partners from across the value chain for ubiquitous computing, spanning positioning, communications, devices, middleware, databases, design, and our two driving market sectors of the creative industries and transportation.Our training programme is based on the approach of personalised pathways that develop individual students' interdisciplinary and transferable skills, and that produce a personal portfolio to showcase the skills and experience gained alongside the more traditional PhD thesis. It includes a flexible taught programme that emphasises student-led seminars, short-fat modules, training projects and e-learning as delivery mechanisms that are suited to PhD training; an industrial internship scheme under which students spend three months working at an industrial partner; and a PhD research project that builds on a proposal developed during the first year of training and that is supported by multiple supervisors from different disciplines with industry involvement. Our DTC will foster a community of researchers through a dedicated shared space, a programme of community building events, training for supervisors and well as students, funding for a student society, and an alumni programme.
more_vert assignment_turned_in Project2010 - 2015Partners:University of Southampton, Corus UK, RIA, URS Corporation (United Kingdom), RSSB +14 partnersUniversity of Southampton,Corus UK,RIA,URS Corporation (United Kingdom),RSSB,Balfour Beatty (United Kingdom),TISCO,URS/Scott Wilson,[no title available],Scott Wilson,Railway Industry Association,BALFOUR BEATTY RAIL,University of Southampton,Tata Steel (United Kingdom),Network Rail Ltd,Network Rail Ltd,Balfour Beatty Rail,Rail Safety and Standards Board (RSSB),Tata Steel (United Kingdom)Funder: UK Research and Innovation Project Code: EP/H044949/1Funder Contribution: 3,139,380 GBPThe majority of the world's railways - including all main lines in the UK - are currently on ballasted track. Although there have been developments in component specifications and materials, the principles of the system have changed little over the past 150 years. Ballasted track has generally been considered to offer the optimum solution in terms of construction cost, stiffness and drainage properties, and ease of modification: thus although more highly engineered track forms have been used (e.g. in Japan, Germany and China), ballasted track has been employed both for upgrades such as the UK West Coast Main Line and for new high speed lines including HS1 (UK), TGV (France) and AVE (Spain). However, the limitations of ballasted track as currently constructed are becoming more apparent and more significant as the demands placed upon it have increased. This has led to higher than expected maintenance requirements and costs, and demonstrates that a transformation in track performance - by retro-fit measures for existing ballasted track, or by an informed decision in favour of an alternative track system in the case of large-scale renewals - is essential if the Government's aspirations of reduced cost and increased capacity for rail transport are to be realised. This Programme Grant will bring about a step-change improvement in the engineering, economic and environmental performance of railway track making it fit for a 21st century railway, by developing new techniques for its design, construction and maintenance. By obtaining a better understanding of the behaviour of track components, the interactions between them and their response to external loading and environmental conditions, the performance of railway track can be significantly enhanced. Improved understanding will allow the development of more effective and efficient maintenance and renewal strategies, leading in turn to reduced costs, increased capacity and improved reliability. The Programme Grant will also enable a radical overhaul of current railway track design appropriate for both new build (e.g. HS2) and upgrades to meet current and future train loading requirements more efficiently than is at present possible. Meeting these challenges will require a coordinated programme of research to investigate how the various components of the track system relate to each other and to external factors. This will involve a series of inter-related experiments together with supporting mathematical and numerical modelling, field monitoring and observation. The outputs of these studies will feed into economic modelling work, leading to the production of a decision-support tool, for use by industry, to appraise the cost implications of using different track technologies in combination with specific external factors. The aims of this Programme Grant can only be achieved by combining a variety of skills and techniques. The research team therefore comprises world-leading engineers and scientists from different disciplines and universities, working together to apply their collective expertise. A well-defined organisational structure and adaptable methods of operation will together provide a high level of integration and synergy between the various research areas and activities; excellent communications between the researchers, institutions and industry partners; flexibility in the allocation and use of resources; agility and responsiveness in research direction; proactive management of risk; and ownership and early uptake of research results by industry.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right