Powered by OpenAIRE graph
Found an issue? Give us feedback

FiberLean Technologies

FiberLean Technologies

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/V029762/1
    Funder Contribution: 649,501 GBP

    We propose to mitigate the transmission of COVID-19 between humans by development of antiviral formulated products. It will be delivered via additives in domestic formulated products, e.g. spray or aerosol, or integrated with current manufacturing processes, forming an invisible and long-lasting film of sub-micron thickness. Unlike disinfectants, formulations will be designed to both capture the aerosol droplets and inactivate the virus. Our first priority is to establish a mechanistic understanding of the interactions between aerosol droplets (or pure virus particles) and surfaces, which will inform possible antiviral mechanisms while providing a set of fundamental and coherent design principles for antiviral surfaces. Two technology platforms will be pursued to leverage the expertise and capability of our industrial partners. Polymer additives with controlled chemistry and molecular architecture will be explored to generate molecular films that facilitate disruption of aerosolised droplets and which may rupture the viral envelope or interfere adversely with key viral proteins and or genetic material. Proposed nanocellulose additives will confer additional benefits in terms of providing a porous structure designed to wick and absorb any protective mucus present. In parallel, hybrid polymer technology will be developed, employing reactive oxygen-producing copper nanoparticles coupled with flavin dyes that produce singlet oxygen species known to deactivate viruses when irradiated with light of the appropriate wavelength. Upon satisfactory antiviral testing results, promising design/formulation will be recommended based on their processability, suitability for end-applications, and environmental impact. Industrial partners with substantial experience in formulation will carry out pilot-scale production and full- scale manufacturing subsequently.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V002651/1
    Funder Contribution: 1,561,990 GBP

    The worldwide transition from the use of oil-based to more sustainable feedstocks for plastics is underway. This transition is due to dwindling oil stocks and a realisation that current levels of the use of this resource is no longer sustainable. More sustainable sources for materials use exist in the form of cellulose from plants. This material is a very versatile polymer and is in fact the most utilised material worldwide. For the last 20+ years I have been researching the structure-property relationships of cellulose and am ideally placed to play a key role in the transition to renewable materials. Nature makes use of cellulose to good effect. Being intrinsically strong and stiff means that cellulose fibres, per weight, can compete mechanically with most synthetic alternatives such as glass. In nature's most prevalent natural composite - wood - cellulose forms the basis of its outstanding structural performance. All our attempts to replicate the composite performance of wood and plants have fallen short, and this fellowship seeks to address these issues, while also using the intrinsic properties of plant fibres and wood themselves. The proposed research aims to do this in the context of both natural and synthetic materials, adding functionality to the composites, while also addressing in a cross-cutting sense the sustainability credentials of the materials and structures proposed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023070/1
    Funder Contribution: 5,505,860 GBP

    Formulation engineering is concerned with the manufacture and use of microstructured materials, whose usefulness depends on their microstructure. For example, the taste, texture and shine of chocolate depends on the cocoa butter being in the right crystal form - when chocolate is heated and cooled its microstructure changes to the unsightly and less edible 'bloomed' form. Formulated products are widespread, and include foods, pharmaceuticals, paints, catalysts, structured ceramics, thin films, cosmetics, detergents and agrochemicals, with a total value of £180 bn per year. In all of these, material formulation and microstructure control the physical and chemical properties that are essential to the product function. The research issues that affect different industry sectors are common: the need is to understand the processing that results in optimal nano- to micro structure and thus product effect. Products are mostly complex soft materials; structured solids, soft solids or structured liquids, with highly process-dependent properties. The CDT fits into Priority Theme 2 of the EPSRC call: Design and Manufacture of Complex Soft Material Products. The vision for the CDT is to be a world-leading provider of research and training addressing the manufacture of formulated products. The UK is internationally-leading in formulation, with many research and manufacturing sites of national and multinational companies, but the subject is interdisciplinary and thus is not taught in many first degree courses. A CDT is thus needed to support this industry sector and to develop future leaders in formation engineering. The existing CDT in Formulation Engineering has received to date > £6.5 million in industry cash, has graduated >75 students and has 46 currently registered. The CDT has led the field; the new National Formulation Centre at CPI was created in 2016, and we work closely with them. The strategy of the new Centre has been co-created with industry: the CDT will develop interdisciplinary research projects in the sustainable manufacture of the next generation of formulated products, with focus in two areas (i) Manufacturing and Manufacturability of New Materials for New Markets 'M4', generating understanding to create sustainable routes to formulated products, and (ii) 'Towards 4.0rmulation': using modern data handling and manufacturing methods ('Industry 4.0') in formulation. We have more than 25 letters from companies offering studentships and >£9 million of support. The research of the Centre will be carried out in collaboration with a range of industry partners: our strategy is to work with companies that are are world-leading in a number of areas; foods (PepsiCo, Mondelez, Unilever), HPC (P+G, Unilever), fine chemicals (Johnson Matthey, Innospec), pharma (AstraZeneca, Bristol Myers Squibb) and aerospace (Rolls-Royce). This structure maximises the synergy possible through working with non-competing groups. We will carry out at least 50 collaborative projects with industry, most of which will be EngD projects in which students are embedded within industrial companies, and return to the University for training courses. This gives excellent training to the students in industrial research; in addition to carrying out a research project of industrial value, students gain experience of industry, present their work at internal and external meetings and receive training in responsible research methods and in the interdisciplinary science and engineering that underpin this critical industry sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S021728/1
    Funder Contribution: 6,652,520 GBP

    We will launch a new CDT, focused on composite materials and manufacturing, to deliver the next generation of composites research and technology leaders equipped with the skills to make an impact on society. In recent times, composites have been replacing traditional materials, e.g. metals, at an unprecedented rate. Global growth in their use is expected to be rapid (5-10% annually). This growth is being driven by the need to lightweight structures for which 'lighter is better', e.g. aircraft, automotive car bodywork and wind blades; and by the benefits that composites offer to functionalise both materials and structures. The drivers for lightweighting are mainly material cost, fuel efficiency, reducing emissions contributing to climate change, but also for more purely engineering reasons such as improved operational performance and functionality. For example, the UK composites sector has contributed significantly to the Airbus A400M and A350 airframes, which exhibit markedly better performance over their metallic counterparts. Similarly, in the wind energy field, typically, over 90% of a wind turbine blade comprises composites. However, given the trend towards larger rotors, weight and stiffness have become limiting factors, necessitating a greater use of carbon fibre. Advanced composites, and the possibility that they offer to add extra functionality such as shape adaptation, are enablers for lighter, smarter blades, and cheaper more abundant energy. In the automotive sector, given the push for greener cars, the need for high speed, production line-scale, manufacturing approaches will necessitate more understanding of how different materials perform. Given these developments, the UK has invested heavily in supporting the science and technology of composite materials, for instance, through the establishment of the National Composites Centre at the University of Bristol. Further investments are now required to support the skills element of the UK provision towards the composites industry and the challenges it presents. Currently, there is a recognised skills shortage in the UK's technical workforce for composites; the shortage being particularly acute for doctoral skills (30-150/year are needed). New developments within industry, such as robotic manufacture, additive manufacture, sustainability and recycling, and digital manufacturing require training that encompasses engineering as well as the physical sciences. Our CDT will supply a highly skilled workforce and technical leadership to support the industry; specifically, the leadership to bring forth new radical thinking and the innovative mind-set required to future-proof the UK's global competitiveness. The development of future composites, competing with the present resins, fibres and functional properties, as well as alternative materials, will require doctoral students to acquire underpinning knowledge of advanced materials science and engineering, and practical experience of the ensuing composites and structures. These highly skilled doctoral students will not only need to understand technical subjects but should also be able to place acquired knowledge within the context of the modern world. Our CDT will deliver this training, providing core engineering competencies, including the experimental and theoretical elements of composites engineering and science. Core engineering modules will seek to develop the students' understanding of the performance of composite materials, and how that performance might be improved. Alongside core materials, manufacturing and computational analysis training, the CDT will deliver a transferable skills training programme, e.g. communication, leadership, and translational research skills. Collaborating with industrial partners (e.g. Rolls Royce) and world-leading international expertise (e.g. University of Limerick), we will produce an exciting integrated programme enabling our students to become future leaders.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.