
WorleyParsons UK
WorleyParsons UK
2 Projects, page 1 of 1
assignment_turned_in Project2012 - 2018Partners:E.ON New Build and Technology Ltd, ETI, National Grid PLC, Nexor Ltd, Isentropic Ltd +42 partnersE.ON New Build and Technology Ltd,ETI,National Grid PLC,Nexor Ltd,Isentropic Ltd,Electricity North West (United Kingdom),ALSTOM GRID UK,National Grid plc,Highview Power Storage,UK Power Networks,EDF Energy,ABB Group,Electricity Storage Network Ltd,British Energy Generation Ltd,Carbon Trust,Highview Power Storage (United Kingdom),Energy Technologies Institute (ETI),Imperial College London,Axeon Ltd,Isentropic Ltd,International Power plc,UK Power Networks,M-Solv Ltd,WorleyParsons UK,Northern Powergrid (United Kingdom),E.ON New Build and Technology Ltd,Department for Business, Energy and Industrial Strategy,Carbon Trust,Dong Energy,Electricity Storage Network (United Kingdom),DECC,E-ON UK plc,M-Solv Limited,Northern Powergrid,ABB Ltd,WorleyParsons UK,Axeon Ltd,Department of Energy and Climate Change,Williams Advanced Engineering,ABB (Switzerland),Ørsted (Denmark),Alstom Grid Ltd,Williams Advanced Engineering,International Power plc,Nexeon Ltd,Electricity North West Limited,EDFFunder: UK Research and Innovation Project Code: EP/K002252/1Funder Contribution: 5,621,020 GBPThe UK electricity system faces challenges of unprecedented proportions. It is expected that 35 to 40% of the UK electricity demand will be met by renewable generation by 2020, an order of magnitude increase from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by the incorporation of heat and transport sectors into the electricity system. The key concerns are associated with system integration costs driven by radical changes on both the supply and the demand side of the UK low-carbon system. Our analysis to date suggests that a low-carbon electricity future would lead to a massive reduction in the utilisation of conventional electricity generation, transmission and distribution assets. The large-scale deployment of energy storage could mitigate this reduction in utilisation, producing significant savings. In this context, the proposed research aims at (i) developing novel approaches for evaluating the economic and environmental benefits of a range of energy storage technologies that could enhance efficiency of system operation and increase asset utilization; and (ii) innovation around 4 storage technologies; Na-ion, redox flow batteries (RFB), supercapacitors, and thermal energy storage (TES). These have been selected because of their relevance to grid-scale storage applications, their potential for transformative research, our strong and world-leading research track record on these topics and UK opportunities for exploitation of the innovations arising. At the heart of our proposal is a whole systems approach, recognising the need for electrical network experts to work with experts in control, converters and storage, to develop optimum solutions and options for a range of future energy scenarios. This is essential if we are to properly take into account constraints imposed by the network on the storage technologies, and in return limitations imposed by the storage technologies on the network. Our work places emphasis on future energy scenarios relevant to the UK, but the tools, methods and technologies we develop will have wide application. Our work will provide strategic insights and direction to a wide range of stakeholders regarding the development and integration of energy storage technologies in future low carbon electricity grids, and is inspired by both (i) limitations in current grid regulation, market operation, grid investment and control practices that prevent the role of energy storage being understood and its economic and environmental value quantified, and (ii) existing barriers to the development and deployment of cost effective energy storage solutions for grid application. Key outputs from this programme will be; a roadmap for the development of grid scale storage suited to application in the UK; an analysis of policy options that would appropriately support the deployment of storage in the UK; a blueprint for the control of storage in UK distribution networks; patents and high impact papers relating to breakthrough innovations in energy storage technologies; new tools and techniques to analyse the integration of storage into low carbon electrical networks; and a cohort of researchers and PhD students with the correct skills and experience needed to support the future research, development and deployment in this area.
more_vert assignment_turned_in Project2013 - 2016Partners:Parsons Brinckerhoff, PQ Silicas UK Ltd (PQ Corporation), E.ON New Build and Technology Ltd, Doosan (United Kingdom), WorleyParsons UK +9 partnersParsons Brinckerhoff,PQ Silicas UK Ltd (PQ Corporation),E.ON New Build and Technology Ltd,Doosan (United Kingdom),WorleyParsons UK,E.ON New Build and Technology Ltd,Parsons Brinckerhoff,Doosan Power Systems,NTU,E-ON UK plc,Doosan Babcock Power Systems,WorleyParsons UK,PQ Corporation,University of NottinghamFunder: UK Research and Innovation Project Code: EP/J020745/1Funder Contribution: 756,554 GBPTo achieve the UK's ambitious target of reducing greenhouse gas emissions by 80% by 2050, it is widely accepted that from ca. 2030 Carbon Capture and Storage (CCS) needs to be fitted to both coal and natural gas fired power plants. The flue gas characteristics of natural fired gas power plants, mostly operating in a combined cycle of gas turbine and steam turbine (NGCC), differ significantly from those from coal-fired power plants. Comparing to the flue gas of the same size coal-fired power plant, the flue gas of a NGCC power plant contains significantly lower CO2 (3-5 vs. 13-15%) and higher O2 concentrations (12-15 vs. 2-4%) and has ca. 50% higher flow rate, which make the separation of CO2 equally, if not more, challenging. The most mature PCC technology, CO2 amine scrubbing, suffers from well-know problems of high energy penalty, oxidative solvent degradation and corrosion, large capture plant footprint and high rate of water consumption. A new generation of PCC technologies for NGCC power plants which overcome these drawbacks need to developed and demonstrated in the next 10 ~ 20 years in order for their commercialisation from ca. 2030. Solid adsorbents looping technology (SALT) is widely recognised as having the potential to be a viable next generation PCC technology for CO2 capture compared to the state-of-art amine scrubbing, offering potentially significantly improved process efficiency at much reduced energy penalty, lower capital and operational costs and smaller plant footprints. The aim of this project is to overcome the performance barriers for implementing the two types of candidate adsorbent systems developed at Nottingham, namely the supported/immobilised polyamines and potassium-promoted co-precipitated sorbent system, in the solid looping technology specifically for NGCC power plants, which effectively integrates both materials and process development and related fundamental issues underpinning the technology development. The objectives are: 1. To overcome the following major specific challenges: (a) To examine and enhance the oxidative and/or hydrolytic stability of supported/immobilised polyamine adsorbents and hence to identify efficient and cost-effective management strategies for spent materials. (b) To optimise the formulation and preparation of the potassium-promoted co-precipitated sorbents for improved working capacity, reaction kinetics and regeneration behaviour at lower temperatures. (c.) To gain comprehensive understanding of to what degree and how different flue gas conditions, particularly oxygen and moisture, can impact the overall performance of adsorbent materials and related techno-economic performance of a solid looping process. 2. To produce kilogram quantities of the optimum adsorbent materials and then demonstrate their performances over repeated adsorption/desorption cycles and to establish the optimal process thermodynamics in fluidized bed testing. 3. To investigate a novel rejuvenation strategy for oxidised polyethyleneimines involving low temperature hydrogenation. 4. To conduct techno-economic studies to assess the cost advantages of the solids looping technology for NGCC power plants over amine scrubbing based on the improved adsorbent performance and optimised process configuration achieved in the project. The know-how acquired in this project will be of direct benefit to academics, CCS research community, power generation and energy industries, energy policy makers/regulators, environmental organisations and government departments such as DECC. The successful delivery of the proposed project represents a major step forward in the development and demonstration of the novel and cost-effective Solids Adsorbents Looping CO2 capture technology for NGCC power stations.
more_vert