Powered by OpenAIRE graph
Found an issue? Give us feedback

QuantumBlack

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S02431X/1
    Funder Contribution: 6,779,380 GBP

    Addressing the health needs of a growing and ageing population is a central challenge facing modern society. Technology is enabling the collection of increasingly large and heterogeneous biomedical data sets, yet interpreting such data to gain knowledge about disease mechanisms and clinical and preventative strategies is still a major open problem. Artificial Intelligence (AI) techniques hold huge promise to provide an integrative framework for extracting knowledge from data, with a high potential for fundamental and clinical breakthroughs with significant impact both on public health and on the future of the UK bioeconomy. The ambition of the proposed CDT is to train a cadre of highly skilled interdisciplinary scientists who will spearhead the development and deployment of AI techniques in the biomedical sector. Achieving our long-term aims will require several hurdles to be overcome. The biomedical sector poses unique methodological challenges to AI technology, due to the need of interpretable models which can quantify uncertainties within predictions. It also presents formidable cultural and technical language barriers, requiring honed communication skills to overcome disciplinary boundaries. Perhaps most importantly, it requires researchers and practitioners with a keen awareness of the societal, legal and ethical dimension of their research, who are able to reach out to societal stakeholders, and to anticipate and engage with the potential issues arising from deploying AI technology in the biomedical sector. We will realise our ambition through a structured training programme: students will initially acquire the foundational skills in a Master by Research first year, which includes taught courses on the technical, biomedical and socio-ethical aspects of biomedical AI, and provides multiple opportunities to directly experience interdisciplinary research through rotation projects. Students will then acquire in depth research experience through an interdisciplinary PhD, bridging between the University of Edinburgh's world-leading institutions pursuing informatics and biomedical research. Students will benefit from a large and exceptionally distinguished faculty of potential supervisors: over 60 academics including several fellows of the Royal Society/ Royal Society of Edinburgh, and over forty recipients of prestigious fellowships from the ERC, the research councils, and biomedical charities such as the Wellcome Trust. This training programme will be interleaved with intensive training in interdisciplinary communication and science communication, and will offer multiple opportunities to engage with external stakeholders including industrial and NHS internships.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023151/1
    Funder Contribution: 6,463,860 GBP

    The CDT will train the next generation of leaders in statistics and statistical machine learning, who will be able to develop widely-applicable novel methodology and theory, as well as create application-specific methods, leading to breakthroughs in real-world problems in government, medicine, industry and science. The research will focus on the development of applicable modern statistical theory and methods as well as on the underpinnings of statistical machine learning. The research will be strongly linked to applications. There is an urgent national need for graduates from this CDT. Large volumes of complicated data are now routinely collected in all sectors of society, encompassing electronic health records, massive scientific datasets, governmental data, and data collected through the advent of the digital economy. The underpinning techniques for exploiting these data come from statistics and machine learning. Exploiting such data is crucial for future UK prosperity. However, several reports from government and learned societies have identified a lack of individuals able to exploit this data. In many situations, existing methodology is insufficient. Off-the-shelf approaches may be misleading due to a lack of reproducibility or sampling biases which they do not correct. Furthermore, understanding the underlying mechanisms is often desired: scientifically valid, interpretable and reproducible results are needed to understand scientific phenomena and to justify decisions, particularly those affecting individuals. Bespoke, model-based statistical methods are needed, that may need to be blended with statistical machine learning approaches to deal with large data. Individuals that can fulfill these more sophisticated demands are doctoral level graduates in statistics who are well versed in the foundations of machine learning. Yet the UK only graduates a small number of statistics PhDs per year, and many of these graduates will not have been exposed to machine learning. The Centre will bring together Imperial and Oxford, two top statistics groups, as equal partners, offering an exceptional training environment and the direct involvement of absolute research leaders in their fields. The supervisor pool will include outstanding researchers in statistical methodology and theory as well as in statistical machine learning. We will use innovative and student-led teaching, focussing on PhD-level training. Teaching cuts across years and thus creates strong cohort cohesion not just within a year group but also between year groups. We will link theoretical advances to application areas through partner interactions as well as through a placement of students with users of statistics. The CDT has a large number of high profile partners that helped shape our application priority areas (digital economy, medicine, engineering, public health, science) and that will co-fund and co-supervise PhD students, as well as co-deliver teaching elements.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.